Abstract
3-SAT is a class of NP-hard combinatorial optimization problems that Ising machines have had difficulty solving successfully. Solution success rate depends not only on the choice of Ising machine, but crucially, also on the mapping from 3-SAT to Ising form. We evaluate the performance of Oscillator Ising Machines (OIMs) on several existing 3-SAT-to-Ising mappings, finding that they yield mediocre or poor results. We propose two novel enhancements to logic-synthesis-based Ising mapping schemes that improve solution success rate significantly (from 0% to about 56% on SATLIB’s uf20 problem set). We then propose a new circuit- and clause-based 3-SAT-to-Ising mapping scheme that employs 3-input OR gates. Using this mapping increases OIM’s success rate on uf20 to 95.9%—we believe this is by far the best raw performance achieved on any 3-SAT problem class by any Ising machine scheme. We also present a comparison of OIM vs. simulated annealing on Ising-mapped 3-SAT problems, revealing that OIM’s performance is significantly superior.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The term “ground state" means a state that achieves the minimum Hamiltonian.
- 2.
Note that sizing in this context does not mean physical scaling.
References
SATLIB benchmark problems. https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
Bhansali, P., Roychowdhury, J.: Gen-Adler: the generalized Adler’s equation for injection locking analysis in oscillators. In: Proceedings of the IEEE ASP-DAC, pp. 522–227 (2009)
Bian, Z., Chudak, F., Israel, R., Lackey, B., Macready, W.G., Roy, A.: Discrete optimization using quantum annealing on sparse Ising models. Front. Phys. 2, 56 (2014). https://doi.org/10.3389/fphy.2014.00056
Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_5
Cai, F., et al.: Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks. Nature Electron. 3(7), 409–418 (2020). https://doi.org/10.1038/s41928-020-0436-6
Camsari, K.Y., Faria, R., Sutton, B.M., Datta, S.: Stochastic \(p\)-bits for invertible logic. Phys. Rev. X 7, 031014 (2017). https://doi.org/10.1103/PhysRevX.7.031014
Chancellor, N., Zohren, S., Warburton, P.A., Benjamin, S.C., Roberts, S.: A direct mapping of max k-SAT and high order parity checks to a chimera graph. Sci. Rep. 6(1), 37107 (2016)
Choi, V.: Adiabatic quantum algorithms for the NP-complete maximum-weight independent set, exact cover and 3SAT problems. arXiv preprint arXiv:1004.2226 (2010)
Cılasun, H., et al.: 3SAT on an all-to-all-connected CMOS Ising solver chip. Sci. Rep. 14, 10757 (2023)
Honjo, T., et al.: 100,000-spin coherent Ising machine. Sci. Adv. 7(40), eabh0952 (2021). https://doi.org/10.1126/sciadv.abh0952
Inagaki, T., et al.: A coherent Ising machine for 2000-node optimization problems. Science 354, 603–606 (2016). https://doi.org/10.1126/science.aah4243
Ising, E.: Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik 31, 253–258 (1925). https://api.semanticscholar.org/CorpusID:122157319
Jagielski, T., Manohar, R., Roychowdhury, J.: FPIM: field-programmable Ising machines for solving SAT. arXiv preprint arXiv:2306.01569 (2023)
Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). https://doi.org/10.1038/nature10012
Karp, R.M.: Reducibility among Combinatorial Problems, pp. 85–103. Springer US, Boston, MA (1972). https://doi.org/10.1007/978-1-4684-2001-2_9
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 74887 (2014). https://doi.org/10.3389/fphy.2014.00005
Marques-Silva, J.: Practical applications of boolean satisfiability. In: 2008 9th International Workshop on Discrete Event Systems, pp. 74–80 (2008). https://doi.org/10.1109/WODES.2008.4605925
Neogy, A., Roychowdhury, J.: Analysis and design of sub-harmonically injection locked oscillators. In: Proceedings of the IEEE DATE (2012)
Festa, P., Pardalos, P.M., Resende, M.G.C., Ribeiro, C.C.: Randomized heuristics for the max-cut problem. Optim. Methods Softw. 17(6), 1033–1058 (2002). https://doi.org/10.1080/1055678021000090033
Roychowdhury, J., Wabnig, J., Srinath, K.P.: Performance of Oscillator Ising Machines on Realistic MU-MIMO Decoding Problems. Research Square preprint (Version 1) (2021). Web link to preprint
Sreedhara, S., Roychowdhury, J., Wabnig, J., Srinath, P.K.: MU-MIMO Detection Using Oscillator Ising Machines. In: Proceedings of the ICCAD, pp. 1–9 (2023)
Su, J., Tu, T., He, L.: A quantum annealing approach for boolean satisfiability problem. In: Proceedings of the IEEE DAC, pp. 1–6 (2016). https://doi.org/10.1145/2897937.2897973
Wang, T., Roychowdhury, J.: OIM: oscillator-based Ising machines for solving combinatorial optimisation problems. arXiv:1903.07163 (2019)
Wang, T., Roychowdhury, J.: OIM: oscillator-based Ising machines for solving combinatorial optimisation problems. In: Proceedings of the UCNC. LNCS sublibrary: Theoretical Computer Science and General Issues. Springer (2019). https://doi.org/10.1007/978-3-030-19311-9_19
Acknowledgments
We gratefully acknowledge support from the US Defense Advanced Research Projects Agency (DARPA) and the US National Science Foundation (NSF). Additional support was provided by Berkeley’s Bakar Prize Award.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sikhakollu, V.P.S., Sreedhara, S., Manohar, R., Mishchenko, A., Roychowdhury, J. (2024). High Quality Circuit-Based 3-SAT Mappings for Oscillator Ising Machines. In: Cho, DJ., Kim, J. (eds) Unconventional Computation and Natural Computation. UCNC 2024. Lecture Notes in Computer Science, vol 14776. Springer, Cham. https://doi.org/10.1007/978-3-031-63742-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-63742-1_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-63741-4
Online ISBN: 978-3-031-63742-1
eBook Packages: Computer ScienceComputer Science (R0)