Skip to main content

High Quality Circuit-Based 3-SAT Mappings for Oscillator Ising Machines

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2024)

Abstract

3-SAT is a class of NP-hard combinatorial optimization problems that Ising machines have had difficulty solving successfully. Solution success rate depends not only on the choice of Ising machine, but crucially, also on the mapping from 3-SAT to Ising form. We evaluate the performance of Oscillator Ising Machines (OIMs) on several existing 3-SAT-to-Ising mappings, finding that they yield mediocre or poor results. We propose two novel enhancements to logic-synthesis-based Ising mapping schemes that improve solution success rate significantly (from 0% to about 56% on SATLIB’s uf20 problem set). We then propose a new circuit- and clause-based 3-SAT-to-Ising mapping scheme that employs 3-input OR gates. Using this mapping increases OIM’s success rate on uf20 to 95.9%—we believe this is by far the best raw performance achieved on any 3-SAT problem class by any Ising machine scheme. We also present a comparison of OIM vs. simulated annealing on Ising-mapped 3-SAT problems, revealing that OIM’s performance is significantly superior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The term “ground state" means a state that achieves the minimum Hamiltonian.

  2. 2.

    Note that sizing in this context does not mean physical scaling.

References

  1. SATLIB benchmark problems. https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

  2. Bhansali, P., Roychowdhury, J.: Gen-Adler: the generalized Adler’s equation for injection locking analysis in oscillators. In: Proceedings of the IEEE ASP-DAC, pp. 522–227 (2009)

    Google Scholar 

  3. Bian, Z., Chudak, F., Israel, R., Lackey, B., Macready, W.G., Roy, A.: Discrete optimization using quantum annealing on sparse Ising models. Front. Phys. 2, 56 (2014). https://doi.org/10.3389/fphy.2014.00056

    Article  Google Scholar 

  4. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_5

    Chapter  Google Scholar 

  5. Cai, F., et al.: Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks. Nature Electron. 3(7), 409–418 (2020). https://doi.org/10.1038/s41928-020-0436-6

    Article  Google Scholar 

  6. Camsari, K.Y., Faria, R., Sutton, B.M., Datta, S.: Stochastic \(p\)-bits for invertible logic. Phys. Rev. X 7, 031014 (2017). https://doi.org/10.1103/PhysRevX.7.031014

    Article  Google Scholar 

  7. Chancellor, N., Zohren, S., Warburton, P.A., Benjamin, S.C., Roberts, S.: A direct mapping of max k-SAT and high order parity checks to a chimera graph. Sci. Rep. 6(1), 37107 (2016)

    Article  Google Scholar 

  8. Choi, V.: Adiabatic quantum algorithms for the NP-complete maximum-weight independent set, exact cover and 3SAT problems. arXiv preprint arXiv:1004.2226 (2010)

  9. Cılasun, H., et al.: 3SAT on an all-to-all-connected CMOS Ising solver chip. Sci. Rep. 14, 10757 (2023)

    Article  Google Scholar 

  10. Honjo, T., et al.: 100,000-spin coherent Ising machine. Sci. Adv. 7(40), eabh0952 (2021). https://doi.org/10.1126/sciadv.abh0952

    Article  Google Scholar 

  11. Inagaki, T., et al.: A coherent Ising machine for 2000-node optimization problems. Science 354, 603–606 (2016). https://doi.org/10.1126/science.aah4243

    Article  Google Scholar 

  12. Ising, E.: Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik 31, 253–258 (1925). https://api.semanticscholar.org/CorpusID:122157319

  13. Jagielski, T., Manohar, R., Roychowdhury, J.: FPIM: field-programmable Ising machines for solving SAT. arXiv preprint arXiv:2306.01569 (2023)

  14. Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). https://doi.org/10.1038/nature10012

    Article  Google Scholar 

  15. Karp, R.M.: Reducibility among Combinatorial Problems, pp. 85–103. Springer US, Boston, MA (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  16. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  17. Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 74887 (2014). https://doi.org/10.3389/fphy.2014.00005

    Article  Google Scholar 

  18. Marques-Silva, J.: Practical applications of boolean satisfiability. In: 2008 9th International Workshop on Discrete Event Systems, pp. 74–80 (2008). https://doi.org/10.1109/WODES.2008.4605925

  19. Neogy, A., Roychowdhury, J.: Analysis and design of sub-harmonically injection locked oscillators. In: Proceedings of the IEEE DATE (2012)

    Google Scholar 

  20. Festa, P., Pardalos, P.M., Resende, M.G.C., Ribeiro, C.C.: Randomized heuristics for the max-cut problem. Optim. Methods Softw. 17(6), 1033–1058 (2002). https://doi.org/10.1080/1055678021000090033

    Article  MathSciNet  Google Scholar 

  21. Roychowdhury, J., Wabnig, J., Srinath, K.P.: Performance of Oscillator Ising Machines on Realistic MU-MIMO Decoding Problems. Research Square preprint (Version 1) (2021). Web link to preprint

  22. Sreedhara, S., Roychowdhury, J., Wabnig, J., Srinath, P.K.: MU-MIMO Detection Using Oscillator Ising Machines. In: Proceedings of the ICCAD, pp. 1–9 (2023)

    Google Scholar 

  23. Su, J., Tu, T., He, L.: A quantum annealing approach for boolean satisfiability problem. In: Proceedings of the IEEE DAC, pp. 1–6 (2016). https://doi.org/10.1145/2897937.2897973

  24. Wang, T., Roychowdhury, J.: OIM: oscillator-based Ising machines for solving combinatorial optimisation problems. arXiv:1903.07163 (2019)

  25. Wang, T., Roychowdhury, J.: OIM: oscillator-based Ising machines for solving combinatorial optimisation problems. In: Proceedings of the UCNC. LNCS sublibrary: Theoretical Computer Science and General Issues. Springer (2019). https://doi.org/10.1007/978-3-030-19311-9_19

Download references

Acknowledgments

We gratefully acknowledge support from the US Defense Advanced Research Projects Agency (DARPA) and the US National Science Foundation (NSF). Additional support was provided by Berkeley’s Bakar Prize Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Pavan Sumanth Sikhakollu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sikhakollu, V.P.S., Sreedhara, S., Manohar, R., Mishchenko, A., Roychowdhury, J. (2024). High Quality Circuit-Based 3-SAT Mappings for Oscillator Ising Machines. In: Cho, DJ., Kim, J. (eds) Unconventional Computation and Natural Computation. UCNC 2024. Lecture Notes in Computer Science, vol 14776. Springer, Cham. https://doi.org/10.1007/978-3-031-63742-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63742-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63741-4

  • Online ISBN: 978-3-031-63742-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics