Skip to main content

Card-Based Overwriting Protocol for Equality Function and Applications

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2024)

Abstract

Research in the area of secure multi-party computation with an unconventional method of using a physical deck of playing cards began in 1989 when den Boer proposed a protocol to compute the logical AND function using five cards. Since then, the area has gained interest from many researchers and several card-based protocols to compute various functions have been developed. In this paper, we propose a card-based protocol called the overwriting protocol that can securely compute the k-candidate n-variable equality function \(f: \{0,1,\ldots ,k-1\}^n \rightarrow \{0,1\}\). We also apply the technique used in this protocol to compute other similar functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe, Y., Hayashi, Y., Mizuki, T., Sone, H.: Five-Card AND computations in committed format using only uniform cyclic shuffles. N. Gener. Comput. 39(1), 97–114 (2021)

    Article  Google Scholar 

  2. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_27

    Chapter  Google Scholar 

  3. den Boer, B.: More efficient match-making and satisfiability The Five Card Trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_23

    Chapter  Google Scholar 

  4. Heather, J., Schneider, S., Teague, V.: Cryptographic protocols with everyday objects. Formal Aspects Comput. 26(1), 37–62 (2014)

    Article  Google Scholar 

  5. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21819-9_16

    Chapter  Google Scholar 

  6. Koch, A.: The landscape of optimal card-based protocols. Math. Cryptol. 1(2), 115–131 (2021)

    MathSciNet  Google Scholar 

  7. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_32

    Chapter  Google Scholar 

  8. Komano, Y., Mizuki, T.: Coin-based secure computations. Int. J. Inf. Secur. 21(4), 833–846 (2022)

    Article  Google Scholar 

  9. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In: Proceedings of the 12th International Conference on Unconventional Computation and Natural Computation (UCNC), pp. 162–173 (2013)

    Google Scholar 

  10. Mizuki, T., Kugimoto, Y., Sone, H.: Secure multiparty computations using a dial lock. In: Proceedings of the 4th Annual Conference on Theory and Applications of Models of Computation (TAMC), pp. 499–510 (2007)

    Google Scholar 

  11. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_36

    Chapter  Google Scholar 

  12. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36

    Chapter  Google Scholar 

  13. Mizuki, T., Uchiike, F., Sone, H.: Securely computing XOR with 10 cards. Australas. J. Combin. 36, 279–293 (2006)

    MathSciNet  Google Scholar 

  14. Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theoret. Comput. Sci. 191, 173–183 (1998)

    Article  MathSciNet  Google Scholar 

  15. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any boolean function. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 110–121. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17142-5_11

    Chapter  Google Scholar 

  16. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority function with eight cards. In: Dediu, A.-H., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45008-2_16

    Chapter  Google Scholar 

  17. Ruangwises, S.: The landscape of computing symmetric \(n\)-variable functions with \(2n\) cards. In: Proceedings of the 20th International Colloquium on Theoretical Aspects of Computing (ICTAC), pp. 74–82 (2023)

    Google Scholar 

  18. Ruangwises, S.: Using five cards to encode each integer in \(\mathbb{Z}\)/6\(\mathbb{Z}\). In: Ryan, P.Y., Toma, C. (eds.) Proceedings of the 14th International Conference on Security for Information Technology and Communications (SecITC), pp. 165–177. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17510-7_12

  19. Ruangwises, S., Itoh, T.: AND protocols using only uniform shuffles. In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 349–358. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19955-5_30

    Chapter  Google Scholar 

  20. Ruangwises, S., Itoh, T.: Securely computing the \(n\)-variable equality function with \(2n\) cards. Theoret. Comput. Sci. 887, 99–110 (2021)

    Article  MathSciNet  Google Scholar 

  21. Shinagawa, K., Mizuki, T.: Card-based protocols using triangle cards. In: Proceedings of the 9th International Conference on Fun with Algorithms (FUN), pp. 31:1–31:13 (2018)

    Google Scholar 

  22. Shinagawa, K., Mizuki, T.: The six-card trick: secure computation of three-input equality. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 123–131. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12146-4_8

    Chapter  Google Scholar 

  23. Shinagawa, K., et al.: Card-based protocols using regular polygon cards. IEICE Trans. Fundamentals 100.A(9), 1900–1909 (2017)

    Google Scholar 

  24. Stiglic, A.: Computations with a deck of cards. Theoret. Comput. Sci. 259, 671–678 (2001)

    Article  MathSciNet  Google Scholar 

  25. Toyoda, K., Miyahara, D., Mizuki, T.: Another use of the five-card trick: card-minimal secure three-input majority function evaluation. In: Adhikari, A., Küsters, R., Preneel, B. (eds.) INDOCRYPT 2021. LNCS, vol. 13143, pp. 536–555. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92518-5_24

    Chapter  Google Scholar 

  26. Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Secure implementations of a random bisection cut. Int. J. Inf. Secur. 19(4), 445–452 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suthee Ruangwises .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruangwises, S., Ono, T., Abe, Y., Hatsugai, K., Iwamoto, M. (2024). Card-Based Overwriting Protocol for Equality Function and Applications. In: Cho, DJ., Kim, J. (eds) Unconventional Computation and Natural Computation. UCNC 2024. Lecture Notes in Computer Science, vol 14776. Springer, Cham. https://doi.org/10.1007/978-3-031-63742-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63742-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63741-4

  • Online ISBN: 978-3-031-63742-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics