Skip to main content

A Methodology for Comparing and Benchmarking Quantum Devices

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2024)

Abstract

Quantum Computing (QC) is undergoing a high rate of development, investment and research devoted to its improvement. However, there is little consensus in the industry and wider literature as to what improvement might consist of beyond ambiguous statements of “more qubits” and “fewer errors”. Before one can decide how to improve something, it is first necessary to define the criteria for success: what are the metrics or statistics that are relevant to the problem? The lack of clarity surrounding this question has led to a rapidly developing capability with little consistency or standards present across the board. This paper lays out a framework by which any user, developer or researcher can define, articulate and justify the success criteria and associated benchmarks that have been used to solve their problem or make their claim.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. 38(4), 1207–1282 (2008)

    Article  MathSciNet  Google Scholar 

  2. Ahn, C., Doherty, A.C., Landahl, A.J.: Continuous quantum error correction via quantum feedback control. Phys. Rev. A 65(4), 042301 (2002)

    Article  Google Scholar 

  3. Albash, T., Martin-Mayor, V., Hen, I.: Analog errors in Ising machines. Quantum Sci. Technol. 4(2), 02LT03 (2019)

    Google Scholar 

  4. Allwright, S.: What is a good F1 score and how do I interpret it? (2022). https://stephenallwright.com/good-f1-score/. Accessed 5 Feb 2024

  5. Ayanzadeh, R., Das, P., Tannu, S.S., Qureshi, M.: EQUAL: improving the fidelity of quantum annealers by injecting controlled perturbations. arXiv: 2108.10964 [quant-ph] (2021)

  6. Ayanzadeh, R., Dorband, J., Halem, M., Finin, T.: Multi-qubit correction for quantum annealers. Sci. Rep. 11(1), 16119 (2021)

    Article  Google Scholar 

  7. Barbosa, A., Pelofske, E., Hahn, G., Djidjev, H.N.: Optimizing embedding-related quantum annealing parameters for reducing hardware bias. In: Ning, L., Chau, V., Lau, F. (eds.) PAAP 2020. CCIS, vol. 1362, pp. 162–173. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0010-4_15

    Chapter  Google Scholar 

  8. Boixo, S., et al.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14(6), 595–600 (2018)

    Article  Google Scholar 

  9. Borah, S., Sarma, B., Kewming, M., Quijandria, F., Milburn, G.J., Twamley, J.: Measurement-based estimator scheme for continuous quantum error correction. Phys. Rev. Res. 4(3), 033207 (2022)

    Article  Google Scholar 

  10. Chancellor, N., et al.: Error measurements for a quantum annealer using the one-dimensional Ising model with twisted boundaries. NPJ Quantum Inf. 8(1), 1–8 (2022)

    Google Scholar 

  11. Cross, A.W., Bishop, L.S., Sheldon, S., Nation, P.D., Gambetta, J.M.: Validating quantum computers using randomized model circuits. Phys. Rev. A 100(3), 032328 (2019)

    Article  Google Scholar 

  12. D-Wave Systems: D-Wave system documentation. https://docs.dwavesys.com/docs/latest. Accessed 16 May 2022

  13. Hargreaves, T.: Is it time to ditch the MNIST dataset? (2020). https://www.ttested.com/ditch-mnist/. Accessed 28 Apr 2023

  14. Hennrich, M., et al.: Experimental repetitive quantum error correction with trapped ions. In: CLEO: 2011 - Laser Science to Photonic Applications (2011)

    Google Scholar 

  15. Kelly, J., et al.: State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519(7541), 66–69 (2015)

    Article  Google Scholar 

  16. Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)

    Article  MathSciNet  Google Scholar 

  17. Knill, E., Laflamme, R., Zurek, W.H.: Resilient quantum computation. Science 279(5349), 342–345 (1998)

    Article  Google Scholar 

  18. Langione, M., Bobier, J.F., Krayer, L., Park, H., Kumar, A.: The race to quantum advantage depends on benchmarking (2022). https://www.bcg.com/publications/2022/value-of-quantum-computing-benchmarks. Accessed 26 Oct 2022

  19. Li, W., Lu, Z.D., Deng, D.L.: Quantum neural network classifiers: a tutorial. SciPost Phys. Lect. Notes 61 (2022)

    Google Scholar 

  20. Linke, N.M., et al.: Experimental comparison of two quantum computing architectures. PNAS 114(13), 3305–3310 (2017)

    Article  Google Scholar 

  21. Lubinski, T., et al.: Application-oriented performance benchmarks for quantum computing. arXiv: 2110.03137 [quant-ph] (2021)

  22. Martiel, S., Ayral, T., Allouche, C.: Benchmarking quantum coprocessors in an Application-Centric, Hardware-Agnostic, and scalable way. IEEE Trans. Quantum Eng. 2, 1–11 (2021)

    Article  Google Scholar 

  23. Moll, N., et al.: Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci. Technol. 3(3), 030503 (2018)

    Article  Google Scholar 

  24. Nelson, J., Vuffray, M., Lokhov, A.Y., Albash, T., Coffrin, C.: High-quality thermal Gibbs sampling with quantum annealing hardware. Phys. Rev. Applied 17(4), 044046 (2022)

    Article  Google Scholar 

  25. Nelson, J., Vuffray, M., Lokhov, A.Y., Coffrin, C.: Single-qubit fidelity assessment of quantum annealing hardware. IEEE Trans. Quantum Eng. 2, 1–10 (2021)

    Article  Google Scholar 

  26. Paltenghi, M.: Cross-platform testing of quantum computing platforms. In: 2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), pp. 269–271 (2022)

    Google Scholar 

  27. Papers with Code: Image classification on MNIST. https://paperswithcode.com/sota/image-classification-on-mnist. Accessed 28 Apr 2023

  28. Pare, S., Bhandari, A.K., Kumar, A., Singh, G.K., Khare, S.: Satellite image segmentation based on different objective functions using genetic algorithm: a comparative study. In: 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 730–734 (2015)

    Google Scholar 

  29. Pearson, A., Mishra, A., Hen, I., Lidar, D.A.: Analog errors in quantum annealing: doom and hope. NPJ Quantum Inf. 5(1), 1–9 (2019)

    Google Scholar 

  30. Pelofske, E., Bärtschi, A., Eidenbenz, S.: Quantum volume in practice: what users can expect from NISQ devices. IEEE Trans. Quantum Eng. 3, 1–19 (2022)

    Article  Google Scholar 

  31. Pelofske, E., Hahn, G., Djidjev, H.N.: Noise dynamics of quantum annealers: estimating the effective noise using idle qubits. Quantum Sci. Technol. 8(3), 035005 (2023)

    Article  Google Scholar 

  32. Pochart, T., Jacquot, P., Mikael, J.: On the challenges of using D-Wave computers to sample Boltzmann random variables. In: 2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C), pp. 137–140 (2022)

    Google Scholar 

  33. Proctor, T., Seritan, S., Rudinger, K., Nielsen, E., Blume-Kohout, R., Young, K.: Scalable randomized benchmarking of quantum computers using mirror circuits. Phys. Rev. Lett. 129(15), 150502 (2022)

    Article  Google Scholar 

  34. Pudenz, K.L., Albash, T., Lidar, D.A.: Error-corrected quantum annealing with hundreds of qubits. Nat. Commun. 5, 3243 (2014)

    Article  Google Scholar 

  35. Ronke, R., Spiller, T.P., D’Amico, I.: Effect of perturbations on information transfer in spin chains. Phys. Rev. A 83(1), 012325 (2011)

    Article  Google Scholar 

  36. Suau, A., Nelson, J., Vuffray, M., Lokhov, A.Y., Cincio, L., Coffrin, C.: Single-qubit cross platform comparison of quantum computing hardware. arXiv: 2108.11334 [quant-ph] (2021)

  37. Tiziano, M.: Estimating quantum volume for advantage (2020). https://support.dwavesys.com/hc/en-us/community/posts/360051945133-Estimating-Quantum-Volume-for-Advantage. Accessed 10 June 2022

  38. Unmoved: 30k cats and dogs 150 \(\times \) 150 greyscale (2023). https://www.kaggle.com/datasets/unmoved/30k-cats-and-dogs-150x150-greyscale

  39. Zaborniak, T., de Sousa, R.: Benchmarking Hamiltonian noise in the D-Wave quantum annealer. IEEE Trans. Quantum Eng. 2, 1–6 (2021)

    Article  Google Scholar 

  40. Zolotarev, Y.F., Luchnikov, I.A., López-Saldivar, J.A., Fedorov, A.K., Kiktenko, E.O.: Continuous monitoring for noisy intermediate-scale quantum processors. arXiv: 2205.06191 [quant-ph] (2022)

Download references

Acknowledgements

The authors acknowledge Defence Science Technical Laboratory (Dstl) who are funding this research. Content includes material subject to ©Crown copyright (2024), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3, or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@nationalarchives.gov.uk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, J., Stepney, S., D’Amico, I. (2024). A Methodology for Comparing and Benchmarking Quantum Devices. In: Cho, DJ., Kim, J. (eds) Unconventional Computation and Natural Computation. UCNC 2024. Lecture Notes in Computer Science, vol 14776. Springer, Cham. https://doi.org/10.1007/978-3-031-63742-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63742-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63741-4

  • Online ISBN: 978-3-031-63742-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics