Skip to main content

Specification-Oriented Automatic Design of Topologically Agnostic Antenna Structure

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

Design of antennas for modern applications is a challenging task that combines cognition-driven development of topology intertwined with tuning of its parameters using rigorous numerical optimization. However, the process can be streamlined by neglecting the engineering insight in favor of automatic determination of structure geometry. In this work, a specification-oriented design of topologically agnostic antenna is considered. The radiator is developed using a bi-stage algorithm that involves min-max classification of randomly-generated topologies followed by local tuning of the promising designs using a trust-region optimization applied to a feature-based representation of the structure frequency response. The automatically generated antenna is characterized by –10 dB reflection for over 600 MHz around the center frequency of 6.5 GHz and a dual-lobe radiation pattern. The obtained performance figures make the radiator of use for in-door positioning applications. The design method has been favorably compared against the frequency-based trust-region optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koziel, S., Bekasiewicz, A., Cheng, Q.S.: Conceptual design and automated optimization of a novel compact UWB MIMO slot antenna. IET Microwaves Antennas Propag. 11(8), 1162–1168 (2017)

    Article  Google Scholar 

  2. Mroczka, J.: The cognitive process in metrology. Measurement 46, 2896–2907 (2013)

    Article  Google Scholar 

  3. Wang, L., Xu, L., Chen, X., Yang, R., Han, L., Zhang, W.: A compact ultrawideband diversity antenna with high isolation. IEEE Ant. Wireless Prop. Lett. 13, 35–38 (2014)

    Article  Google Scholar 

  4. Koziel, S., Bekasiewicz, A.: Comprehensive comparison of compact UWB antenna performance by means of multiobjective optimization. IEEE Trans. Antennas Propag. 65(7), 3427–3436 (2017)

    Article  MathSciNet  Google Scholar 

  5. Khan, M.S., Capobianco, A., Asif, S.M., Anagnostou, D.E., Shubair, R.M., Braaten, B.D.: A compact CSRR-enabled UWB diversity antenna. IEEE Antennas Wirel. Propag. Lett. 16, 808–812 (2017)

    Article  Google Scholar 

  6. Jacobs, J.P.: Accurate modeling by convolutional neural-network regression of resonant frequencies of dual-band pixelated microstrip antenna. IEEE Antennas Wirel. Propag. Lett. 20(12), 2417–2421 (2021)

    Article  Google Scholar 

  7. Ghassemi, M., Bakr, M., Sangary, N.: Antenna design exploiting adjoint sensitivity-based geometry evolution. IET Microwaves Antennas Propag. 7, 268–276 (2013)

    Article  Google Scholar 

  8. Bekasiewicz, A.: Optimization of the hardware layer for IoT systems using a trust-region method with adaptive forward finite differences. IEEE Internet Things J. 10(11), 9498–9512 (2023)

    Article  Google Scholar 

  9. Whiting, E.B., Campbell, S.D., Mackertich-Sengerdy, G., Werner, D.H.: Meta-atom library generation via an efficient multi-objective shape optimization method. IEEE Open J. Antennas Propag. 28, 24229–24242 (2020)

    Google Scholar 

  10. Alnas, J., Giddings, G., Jeong, N.: Bandwidth improvement of an inverted-f antenna using dynamic hybrid binary particle swarm optimization. Appl. Sci. 11, 2559 (2021)

    Article  Google Scholar 

  11. Capek, M., Jelinek, L., Gustafsson, M.: Shape synthesis based on topology sensitivity. IEEE Trans. Antennas Propag. 67(6), 3889–3901 (2019)

    Article  Google Scholar 

  12. Conn, A., Gould, N.I.M., Toint, P.L.: Trust-region methods. MPS-SIAM Series on Optimization, Philadelphia (2000)

    Book  Google Scholar 

  13. Koziel, S., Pietrenko-Dabrowska, A.: Performance-based nested surrogate modeling of antenna input characteristics. IEEE Trans. Antennas Propag. 67(5), 2904–2912 (2019)

    Article  Google Scholar 

  14. CST Microwave Studio, Dassault Systems, 10 rue Marcel Dassault, CS 40501, Vélizy-Villacoublay Cedex, France (2015)

    Google Scholar 

  15. Pietrenko-Dabrowska, A., Koziel, S.: Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation. Springer, New York (2023). https://doi.org/10.1007/978-3-031-43845-5

  16. Koziel, S., Bekasiewicz, A.: Expedited simulation-driven design optimization of UWB antennas by means of response features. Int. J. RF Microwave Comput. Aided Eng. 27(6), 1–8 (2017)

    Article  Google Scholar 

  17. Mathur, R.: An analytical approach to computing step sizes for finite-difference derivatives. PhD Thesis, University of Texas, Austin (2012)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Centre of Poland Grant 2021/43/B/ST7/01856 and Gdansk University of Technology (Excellence Initiative - Research University) Grant 16/2023/IDUB/IV.2/EUROPIUM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Bekasiewicz .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bekasiewicz, A., Dzwonkowski, M., Dhaene, T., Couckuyt, I. (2024). Specification-Oriented Automatic Design of Topologically Agnostic Antenna Structure. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14834. Springer, Cham. https://doi.org/10.1007/978-3-031-63759-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63759-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63758-2

  • Online ISBN: 978-3-031-63759-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics