Skip to main content

Estimating Soil Hydraulic Parameters for Unsaturated Flow Using Physics-Informed Neural Networks

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

Water movement in soil is essential for weather monitoring, prediction of natural disasters, and agricultural water management. Richardson-Richards’ equation (RRE) is the characteristic partial differential equation for studying soil water movement. RRE is a non-linear PDE involving water potential, hydraulic conductivity, and volumetric water content. This equation has underlying non-linear parametric relationships called water retention curves (WRCs) and hydraulic conductivity functions (HCFs). This two-level non-linearity makes the problem of unsaturated water flow of soils challenging to solve. Physics-Informed Neural Networks (PINNs) offer a powerful paradigm to combine physics in data-driven techniques. From noisy or sparse observations of one variable (water potential), we use PINNs to learn the complete system, estimate the parameters of the underlying model, and further facilitate the prediction of infiltration and discharge. We employ training on RRE, WRC, HCF, and measured values to resolve two-level non-linearity directly instead of explicitly deriving water potential or volumetric water content-based formulations. The parameters to be estimated are made trainable with initialized values. We take water potential data from simulations and use this data to solve the inverse problem with PINN and compare estimated parameters, volumetric water content, and hydraulic conductivity with actual values. We chose different types of parametric relationships and wetting conditions to show the approach’s effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The code is available at https://github.com/cvjena/InverseRRE.

References

  1. Ahmad, W., Shadaydeh, M., Denzler, J.: Deep learning-based group causal inference in multivariate time-series. In: AAAI Workshop on AI for Time-series (2024). https://arxiv.org/abs/2401.08386, (accepted)

  2. Al Safwan, A., Song, C., Waheed, U.: Is it time to swish? Comparing activation functions in solving the helmholtz equation using PINNs 2021(1), 1–5 (2021). https://doi.org/10.3997/2214-4609.202113254, https://www.earthdoc.org/content/papers/10.3997/2214-4609.202113254

  3. Bandai, T., Ghezzehei, T.A.: Forward and inverse modeling of water flow in unsaturated soils with discontinuous hydraulic conductivities using physics-informed neural networks with domain decomposition. Hydrol. Earth Syst. Sci. 26(16), 4469–4495 (2022). https://doi.org/10.5194/hess-26-4469-2022, https://hess.copernicus.org/articles/26/4469/2022/

  4. Büchner, T., Guntinas-Lichius, O., Denzler, J.: Improved obstructed facial feature reconstruction for emotion recognition with minimal change CycleGANs. In: Blanc-Talon, J., Delmas, P., Philips, W., Scheunders, P. (eds.) Advanced Concepts for Intelligent Vision Systems. ACIVS 2023. LNCS, vol. 14124. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45382-3_22

  5. Chen, Y., Xu, Y., Wang, L., Li, T.: Modeling water flow in unsaturated soils through physics-informed neural network with principled loss function. Comput. Geotech. 161, 105546 (2023). https://doi.org/10.1016/j.compgeo.2023.105546, https://www.sciencedirect.com/science/article/pii/S0266352X23003038

  6. Eivazi, H., Tahani, M., Schlatter, P., Vinuesa, R.: Physics-informed neural networks for solving reynolds-averaged navier-stokes equations. Phys. Fluids 34, 075117 (2022). https://doi.org/10.1063/5.0095270

  7. Farthing, M.W., Ogden, F.L.: Numerical solution of Richards’ equation: a review of advances and challenges. Soil Sci. Soc. Am. J. 81(6), 1257–1269 (2017). https://doi.org/10.2136/sssaj2017.02.0058, https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/sssaj2017.02.0058

  8. Gao, Z., Yan, L., Zhou, T.: Failure-informed adaptive sampling for PINNs. SIAM J. Sci. Comput. 45(4), A1971–A1994 (2023). https://doi.org/10.1137/22M1527763

  9. Gardner, G.H.F.: Formation velocity and DENSITY—the diagnostic basics for stratigraphic traps. Geophysics 39(6), 770 (1974). https://doi.org/10.1190/1.1440465

    Article  Google Scholar 

  10. van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980). https://doi.org/10.2136/sssaj1980.03615995004400050002x, https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/sssaj1980.03615995004400050002x

  11. Huang, Y., et al.: Enhanced stability of grassland soil temperature by plant diversity. Nat. Geosci. 17, 44–50 (2023). https://doi.org/10.1038/s41561-023-01338-5

  12. Ireson, A.M., Spiteri, R.J., Clark, M.P., Mathias, S.A.: A simple, efficient, mass-conservative approach to solving Richards’ equation (openre, v1. 0). Geosci. Model Dev. 16(2), 659–677 (2023)

    Google Scholar 

  13. Depina, I., Saket Jain, S.M.V., Gotovac, H.: Application of physics-informed neural networks to inverse problems in unsaturated groundwater flow. Georisk: Assess. Manag. Risk Eng. Syst. Geohazards 16(1), 21–36 (2022). https://doi.org/10.1080/17499518.2021.1971251

  14. Jonard, F., Weihermüller, L., Schwank, M., Jadoon, K.Z., Vereecken, H., Lambot, S.: Estimation of hydraulic properties of a sandy soil using ground-based active and passive microwave remote sensing. IEEE Trans. Geosci. Remote Sens. 53(6), 3095–3109 (2015)

    Article  Google Scholar 

  15. Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine learning. Nat. Rev. Phys. 3(6), 422–440 (2021). https://doi.org/10.1038/s42254-021-00314-5

  16. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR). San Diega, CA, USA (2015)

    Google Scholar 

  17. Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat. Mach. Intell. 3(3), 218–229 (2021). https://doi.org/10.1038/s42256-021-00302-5

  18. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library for solving differential equations. SIAM Rev. 63(1), 208–228 (2021). https://doi.org/10.1137/19M1274067

    Article  MathSciNet  Google Scholar 

  19. Lu, L., Pestourie, R., Yao, W., Wang, Z., Verdugo, F., Johnson, S.G.: Physics-informed neural networks with hard constraints for inverse design. SIAM J. Sci. Comput. 43(6), B1105–B1132 (2021). https://doi.org/10.1137/21M1397908

  20. Maddu, S., Sturm, D., Müller, C.L., Sbalzarini, I.F.: Inverse Dirichlet weighting enables reliable training of physics informed neural networks. Mach. Learn. Sci. Technol. 3(1), 015026 (2022). https://doi.org/10.1088/2632-2153/ac3712

  21. Mohanty, B.P.: Soil hydraulic property estimation using remote sensing: a review. Vadose Zone J. 12(4), 1–9 (2013)

    Article  Google Scholar 

  22. Pandey, S., Schumacher, J., Sreenivasan, K.R.: A perspective on machine learning in turbulent flows. J. Turbul. 21, 567–584 (2020). https://doi.org/10.1080/14685248.2020.1757685

  23. Pauwels, V.R., Balenzano, A., Satalino, G., Skriver, H., Verhoest, N.E., Mattia, F.: Optimization of soil hydraulic model parameters using synthetic aperture radar data: an integrated multidisciplinary approach. IEEE Trans. Geosci. Remote Sens. 47(2), 455–467 (2009)

    Article  Google Scholar 

  24. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019). https://doi.org/10.1016/j.jcp.2018.10.045

  25. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part II): Data-driven discovery of nonlinear partial differential equations (2017). http://arxiv.org/abs/1711.10566

  26. Rasht-Behesht, M., Huber, C., Shukla, K., Karniadakis, G.E.: Physics-informed neural networks (PINNs) for wave propagation and full waveform inversions. J. Geophys. Res. Solid Earth 127(5), e2021JB023120 (2022). https://doi.org/10.1029/2021JB023120, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JB023120

  27. Rezaei, M., et al.: Incorporating machine learning models and remote sensing to assess the spatial distribution of saturated hydraulic conductivity in a light-textured soil. Comput. Electron. Agric. 209, 107821 (2023). https://doi.org/10.1016/j.compag.2023.107821, https://www.sciencedirect.com/science/article/pii/S0168169923002090

  28. Richards, L.A.: Capillary conduction of liquids through porous mediums. Physics 1(5), 318–333 (2004). https://doi.org/10.1063/1.1745010

  29. Santanello, J.A., Jr., et al.: Using remotely-sensed estimates of soil moisture to infer soil texture and hydraulic properties across a semi-arid watershed. Remote Sens. Environ. 110(1), 79–97 (2007)

    Article  Google Scholar 

  30. Song, C., Alkhalifah, T., Waheed, U.: Solving the frequency-domain acoustic VTI wave equation using physics-informed neural networks. Geophys. J. Int. 225(2), 846–859 (2021). https://doi.org/10.1093/gji/ggab010, publisher Copyright: 2021 The Author(s) 2021. Published by Oxford University Press on behalf of The Royal Astronomical Society

  31. Srivastava, R., Yeh, T.C.J.: Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resour. Res. 27(5), 753–762 (1991). https://doi.org/10.1029/90WR02772, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/90WR02772

  32. Tartakovsky, A.M., Marrero, C.O., Perdikaris, P., Tartakovsky, G.D., Barajas-Solano, D.: Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems. Water Resour. Res. 56(5), e2019WR026731 (2020). https://doi.org/10.1029/2019WR026731, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026731, e2019WR026731 10.1029/2019WR026731

  33. Vemuri, S.K., Denzler, J.: Gradient statistics-based multi-objective optimization in physics-informed neural networks. Sensors 23(21), 8665 (2023). https://doi.org/10.3390/s23218665, https://www.mdpi.com/1424-8220/23/21/8665

  34. Wu, C., Zhu, M., Tan, Q., Kartha, Y., Lu, L.: A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 403, 115671 (2023). https://doi.org/10.1016/j.cma.2022.115671, https://www.sciencedirect.com/science/article/pii/S0045782522006260

  35. Wu, W., Daneker, M., Jolley, M., Turner, K., Lu, L.: Effective data sampling strategies and boundary condition constraints of physics-informed neural networks for identifying material properties in solid mechanics. Appl. Math. Mech. 44, 1039–1068 (2023). https://doi.org/10.1007/s10483-023-2995-8

Download references

Acknowledgements

This research is funded by the Federal Ministry for Economic Affairs and Climate Actions (BMWK) for the project titled LuFo VI-2 Melodi 20E2115B. We also thank Bandai et al. [3] and Ireson et al. [12] for their open-source simulation codes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Karthikeya Vemuri .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vemuri, S.K., Büchner, T., Denzler, J. (2024). Estimating Soil Hydraulic Parameters for Unsaturated Flow Using Physics-Informed Neural Networks. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14834. Springer, Cham. https://doi.org/10.1007/978-3-031-63759-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63759-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63758-2

  • Online ISBN: 978-3-031-63759-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics