Skip to main content

Integration of Self-supervised BYOL in Semi-supervised Medical Image Recognition

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14835))

Included in the following conference series:

  • 475 Accesses

Abstract

Image recognition techniques heavily rely on abundant labeled data, particularly in medical contexts. Addressing the challenges associated with obtaining labeled data has led to the prominence of self-supervised learning and semi-supervised learning, especially in scenarios with limited annotated data. In this paper, we proposed an innovative approach by integrating self-supervised learning into semi-supervised models to enhance medical image recognition. Our methodology commences with pre-training on unlabeled data utilizing the BYOL method. Subsequently, we merge pseudo-labeled and labeled datasets to construct a neural network classifier, refining it through iterative fine-tuning. Experimental results on three different datasets demonstrate that our approach optimally leverages unlabeled data, outperforming existing methods in terms of accuracy for medical image recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://tinyurl.com/OCT2017dataset.

  2. 2.

    https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database.

  3. 3.

    https://datasets.simula.no/kvasir/.

References

  1. Rajkomar, A., Dean, J., Kohane, I.: Machine learning in medicine. New Engl. J. Med. 380, 1347–1358 (2019). https://doi.org/10.1056/NEJMra1814259

    Article  Google Scholar 

  2. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017). https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  3. Chaturvedi, K., Braytee, A., Li, J., Prasad, M.: SS-CPGAN: self-supervised cut-and-pasting generative adversarial network for object segmentation. Sensors 23(7), 3649 (2023)

    Article  Google Scholar 

  4. Grill, J.B., et al.: Bootstrap your own latent: a new approach to self-supervised learning. arXiv.org (2020)

  5. Zhou, Y., et al.: Vgg-fusionnet: a feature fusion framework from ct scan and chest x-ray images based deep learning for covid-19 detection. In: 2022 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 1–9. IEEE (2022)

    Google Scholar 

  6. Esteva, A.: Dermatologist-level classification of skin cancer with deep neural networks. Nature (London) 542(7639), 115–118 (2017). https://doi.org/10.1038/nature21056

    Article  Google Scholar 

  7. Filipovych, R., Davatzikos, C.: Semi-supervised pattern classification of medical images: application to mild cognitive impairment (mci). NeuroImage (Orlando, Fla.) 55(3), 1109–1119 (2011). https://doi.org/10.1016/j.neuroimage.2010.12.066

    Article  Google Scholar 

  8. Peng, Z., et al.: Faxmatch: multi-curriculum pseudo-labeling for semi-supervised medical image classification. Med. Phys. (Lancaster) 50(5), 3210–3222 (2023). https://doi.org/10.1002/mp.16312

    Article  Google Scholar 

  9. Liu, Q., Yu, L., Luo, L., Dou, Q., Heng, P.A.: Semi-supervised medical image classification with relation-driven self-ensembling model. IEEE Trans. Med. Imaging 39(11), 3429–3440 (2020). https://doi.org/10.1109/TMI.2020.2995518

    Article  Google Scholar 

  10. Zhao, H., et al.: Anomaly detection for medical images using self-supervised and translation-consistent features. IEEE Trans. Med. Imaging 40(4), 1404–1415 (2021). https://doi.org/10.1109/TMI.2020.3000458

    Article  Google Scholar 

  11. Kermany, D., Zhang, K., Goldbaum, M.: Labeled optical coherence tomography (oct) and chest x-ray images for classification. Mendeley Data (2018). https://doi.org/10.17632/rscbjbr9sj.2

  12. Sahoo, P., Roy, I., Ahlawat, R., et al.: Potential diagnosis of covid-19 from chest x-ray and ct findings using semi-supervised learning. Phys. Eng. Sci. Med. 45(1), 31–42 (2022). https://doi.org/10.1007/s13246-021-01075-2

    Article  Google Scholar 

  13. Liu, P., Qian, W., Cao, J., Xu, D.: Semi-supervised medical image classification via increasing prediction diversity. Appl. Intell. (Dordrecht, Netherlands) 53(9), 10162–10175 (2023). https://doi.org/10.1007/s10489-022-04012-2

    Article  Google Scholar 

  14. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  15. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: Mixmatch: a holistic approach to semi-supervised learning. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  16. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. Adv. Neural. Inf. Process. Syst. 33, 596–608 (2020)

    Google Scholar 

  17. Miyato, T., Maeda, S.I., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Article  Google Scholar 

  18. Cui, S., Wang, S., Zhuo, J., Li, L., Huang, Q., Tian, Q.: Towards discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3941–3950 (2020)

    Google Scholar 

  19. Gyawali, P.K., Ghimire, S., Bajracharya, P., Li, Z., Wang, L.: Semi-supervised medical image classification with global latent mixing. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 604–613. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_59

    Chapter  Google Scholar 

  20. Wang, X., Chen, H., Xiang, H., Lin, H., Lin, X., Heng, P.A.: Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification. Med. Image Anal. 70, 102010 (2021)

    Article  Google Scholar 

  21. Liu, P., Qian, W., Cao, J., Xu, D.: Semi-supervised medical image classification via increasing prediction diversity. Appl. Intell. 53(9), 10162–10175 (2023)

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge Kexin Liu, Qian Deng, Ruyi Jin, Shuting Li, and Yongxin Dai for their invaluable contributions to the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Braytee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, H., Jia, Y., Xu, R., Prasad, M., Anaissi, A., Braytee, A. (2024). Integration of Self-supervised BYOL in Semi-supervised Medical Image Recognition. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14835. Springer, Cham. https://doi.org/10.1007/978-3-031-63772-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63772-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63771-1

  • Online ISBN: 978-3-031-63772-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics