Skip to main content

Simulation and Detection of Healthcare Fraud in German Inpatient Claims Data

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

The German Federal Criminal Police Office (BKA) reported damages of 72.6 million euros due to billing fraud in the German healthcare system in 2022, an increase of 25% from the previous year. However, existing literature on automated healthcare fraud detection focuses on US, Taiwanese, or private data, and detection approaches based on individual claims are virtually nonexistent. In this work, we develop machine learning methods that detect fraud in German hospital billing data.

The lack of publicly available and labeled datasets limits the development of such methods. Therefore, we simulated inpatient treatments based on publicly available statistics on main and secondary diagnoses, operations and demographic information. We injected different types of fraud that were identified from the literature. This is the first complete simulator for inpatient care data, enabling further research in inpatient care.

We trained and compared several Machine Learning models on the simulated dataset. Gradient Boosting and Random Forest achieved the best results with a weighted F1 measure of approximately 80%. An in-depth analysis of the presented methods shows they excel at detecting compensation-related fraud, such as DRG upcoding. An impact analysis on private inpatient claims data of a big German health insurance company revealed that up to 12% of all treatments were identified as potentially fraudulent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bundesministerium für Gesundheit: Vorläufige Finanzergebnisse der GKV für das Jahr 2021. https://www.bundesgesundheitsministerium.de/presse/pressemitteilungen/vor laeufige-finanzergebnisse-gkv-2021.html. Accessed 23 Dec 2023

  2. AOK Bundesverband GbR: Fehlverhalten im Gesundheitswesen. Bericht über die Arbeit und die Ergebnisse der Stellen zur Bekämpfung von Fehlverhalten im Gesundheitswesen (2021). https://aok-bv.de/imperia/md/aokbv/presse/pressemitteilungen/archiv/taetigkeitsbericht_fv _im_gesundheitswesen_2018-2019.pdf. Accessed 23 Dec 2023

  3. Jürges, H., Köberlein, J.: First do no harm. Then do not cheat: DRG upcoding in German neonatology. DIW Discussion Papers (2013)

    Google Scholar 

  4. Institut für das Entgeltsystem im Krankenhaus: Fallpauschalen-Katalog gem. §17b Abs. 1 S. 4 KHG Katalog ergänzender Zusatzentgelte gem. §17b Abs. 1 S. 7 KHG Pflegeerlöskatalog gem. §17b Abs. 4 S. 5 KHG. https://www.g-drg.de/ag-drg-system-2021/fallpauschalen-katalog/fallpauschalen-katalog-2021. Accessed 26 Dec 2023

  5. Busse, R., Geissler, A., Aaviksoo, A.: Diagnosis related groups in Europe: moving towards transparency, efficiency, and quality in hospitals? BMJ (Clin. Res. Ed.) (2013). https://doi.org/10.1136/bmj.f3197

    Article  Google Scholar 

  6. van Herwaarden, S., Wallenburg, I., Messelink, J.: Opening the black box of diagnosis-related groups (DRGs): unpacking the technical remuneration structure of the Dutch DRG system. Health Econ. Policy Law (2020). https://doi.org/10.1017/S1744133118000324

  7. Sievert, J.: Möglichkeiten der Abrechnungsmanipulation im Krankenhaus. Logos, Berlin (2011)

    Google Scholar 

  8. Statistisches Bundesamt: 23131-0003: Krankenhauspatienten: Deutschland, Jahre, Geschlecht, Altersgruppen, Wohnort des Patienten, Hauptdiagnose ICD-10 (1-3-Steller Hierarchie) (2022). https://www-genesis.destatis.de/genesis/downloads/00/tables/23131-0003_00.csv. Accessed 26 Dec 2023

  9. Statistisches Bundesamt: 23141-0003: Nebendiagnosen der vollstationären Patienten: Deutschland, Jahre, Geschlecht, Altersgruppen, Wohnort des Patienten, Nebendiagnosen ICD-10 (1-3-Steller Hierarchie) (2022). https://www-genesis.destatis.de/genesis//online?operation=table &code=23141-0003. Accessed 26 Dec 2023

  10. Statistisches Bundesamt: 23141-0111: Operationen und Prozeduren an vollstationären Patienten: Bundesländer, Jahre, Geschlecht, Altersgruppen, Operationen und Prozeduren (1-4-Steller Hierarchie) (2022). https://www-genesis.destatis.de/genesis//online?operation=table &code=23141-0111. Accessed 26 Dec 2023

  11. Statistisches Bundesamt: Neues Krankenhausverzeichnis (2021). https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/krankenhausverzeichnis.html. Accessed 26 Dec 2023

  12. IMC clinicon: IMC Navigator https://www.imc-clinicon.de/tools/imc-navigator/index_ger.html. Accessed 26 Dec 2023

  13. World Health Organization: Weight-for-age BOYS. https://cdn.who.int/media/docs/default-source/child-growth/child-growth-standards/indicators/weight-for-age/wfa-boys-0-13-zscores.pdf. Accessed 26 Dec 2023

  14. World Health Organization: Weight-for-age GIRLS. https://cdn.who.int/media/docs/default-source/child-growth/child-growth-standards/indicators/weight-for-age/wfa-girls-0-13-zscores.pdf. Accessed 26 Dec 2023

  15. Statistisches Bundesamt: Grunddaten der Krankenhäuser. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Kranken haeuser/Publikationen/Downloads-Krankenhaeuser/grunddaten-krankenhaeuser-2120611217004.pdf. Accessed 26 Dec 2023

  16. Pedregosa, F., Varoquaux, G., Gramfort, A.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. (2011)

    Google Scholar 

  17. Li, J., Huang, K.-Y., Jin, J.: A survey on statistical methods for health care fraud detection. Health Care Manag. Sci. (2008). https://doi.org/10.1007/s10729-007-9045-4

    Article  Google Scholar 

  18. Gee, J., Button, M., Brooks, G.: The financial cost of healthcare fraud. University of Portsmouth and Maclntyre Hudson LLP (2010). https://pure.port.ac.uk/ws/portalfiles/portal/1925942/The-Financial-Cost-of-Healthcare-Fraud---Final-%282%29.pdf. Accessed 26 Dec 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schrupp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schrupp, B., Klede, K., Raab, R., Eskofier, B. (2024). Simulation and Detection of Healthcare Fraud in German Inpatient Claims Data. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14835. Springer, Cham. https://doi.org/10.1007/978-3-031-63772-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63772-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63771-1

  • Online ISBN: 978-3-031-63772-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics