Skip to main content

Global Induction of Oblique Survival Trees

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

Survival analysis focuses on the prediction of failure time and serves as an important prognostic tool, not solely confined to medicine but also across diverse fields. Machine learning methods, especially decision trees, are increasingly replacing traditional statistical methods which are based on assumptions that are often difficult to meet. The paper presents a new global method for inducing survival trees containing Kaplan–Mayer estimators in leaves. Using a specialized evolutionary algorithm, the method searches for oblique trees in which multivariate tests in internal nodes divide the feature space using hyperplanes. Specific variants of mutation and crossover operators have been developed, making evolution effective and efficient. The fitness function is based on the integrated Brier score and prevents overfitting taking into account the size of the tree. A preliminary experimental verification and comparison with classical univariate trees was carried out on real medical datasets. The evaluation results are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Assel, M., Sjoberg, D.D., Vickers, A.J.: The brier score does not evaluate the clinical utility of diagnostic tests or prediction models. Diagn. Prognostic Res. 1(1), 1–7 (2017)

    Article  Google Scholar 

  2. Bertsimas, D., Dunn, J., Gibson, E., Orfanoudaki, A.: Optimal survival trees. Mach. Learn. 111(8), 2951–3023 (2022)

    Article  MathSciNet  Google Scholar 

  3. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth, Belmont, CA (1984)

    Google Scholar 

  4. Cho, H.J., Hong, S.M.: Median regression tree for analysis of censored survival data. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 38(3) (2008)

    Google Scholar 

  5. Fleming, T.R., Harrington, D.P.: Counting Processes and Survival Analysis. Wiley (1991)

    Google Scholar 

  6. Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04923-5

  7. Graf, E., Schmoor, C., Sauerbrei, W., Schumacher, M.: Assessment and comparison of prognostic classification schemes for survival data. Stat. Med. 18, 2529–2545 (1999)

    Article  Google Scholar 

  8. Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15(3), 651–674 (2006)

    Article  MathSciNet  Google Scholar 

  9. Hsich, E., Gorodeski, E.Z., Blackstone, E.H., Ishwaran, H., Lauer, M.S.: Identifying important risk factors for survival in patient with systolic heart failure using random survival forests. Circ. Cardiovasc. Qual. Outcomes 4(1), 39–45 (2011)

    Google Scholar 

  10. Jaeger, B.C., et al.: Oblique random survival forests. Ann. Appl. Stat. 13(3), 1847–1883 (2019)

    Article  MathSciNet  Google Scholar 

  11. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958)

    Article  MathSciNet  Google Scholar 

  12. Kretowska, M.: Piecewise-linear criterion functions in oblique survival trees induction. Arif. Intell. Med. 75, 32–39 (2017)

    Article  Google Scholar 

  13. Kretowski, M.: Evolutionary Decision Trees in Large-Scale Data Mining. SBD, vol. 59. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21851-5

    Book  Google Scholar 

  14. Kundu, M.G., Ghosh, S.: Survival trees based on heterogeneity in time-to-event and censoring distributions using parameter instability test. Stat. Anal. Data Mining ASA Data Sci. J. 14(5), 466–483 (2021)

    Article  MathSciNet  Google Scholar 

  15. Kyle, R.A., et al.: A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 346(8), 564–569 (2002)

    Article  Google Scholar 

  16. LeBlanc, M., Crowley, J.: Relative risk trees for censored survival data. Biometrics 48, 411–425 (1992)

    Article  Google Scholar 

  17. LeBlanc, M., Crowley, J.: Survival trees by goodness of split. J. Am. Stat. Assoc. 88(422), 457–467 (1993)

    Article  MathSciNet  Google Scholar 

  18. Pintilie, M.: Competing Risks: A Practical Perspective, vol. 58. Wiley (2006)

    Google Scholar 

  19. Therneau, T.M.: Survival: Survival Analysis (2016). http://CRAN.R-project.org/package=survival. R package version 2.39

  20. Therneau, T.M., Grambsch, P.M., Fleming, T.R.: Martingale-based residuals for survival models. Biometrika 77(1), 147–160 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported by Bialystok University of Technology under the grant WZ/WI-IIT/4/2023 founded by Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Kretowska .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kretowska, M., Kretowski, M. (2024). Global Induction of Oblique Survival Trees. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14835. Springer, Cham. https://doi.org/10.1007/978-3-031-63772-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63772-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63771-1

  • Online ISBN: 978-3-031-63772-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics