Skip to main content

Neural Dynamics in Parkinson’s Disease: Integrating Machine Learning and Stochastic Modelling with Connectomic Data

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

Parkinson’s disease (PD) is a neurological disorder defined by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta, which causes both motor and non-motor symptoms. Understanding the neuronal processes that underlie PD is critical for creating successful therapies. This work presents a novel strategy that combines machine learning (ML) and stochastic modelling with connectomic data to understand better the complicated brain pathways involved in PD pathogenesis. We use modern computational methods to study large-scale neural networks to identify neuronal activity patterns related to PD development. We aim to define the subtle structural and functional connection changes in PD brains by combining connectomic with stochastic noises. Stochastic modelling approaches reflect brain dynamics’ intrinsic variability and unpredictability, shedding light on the origin and spread of pathogenic events in PD. We created a hybrid modelling formalism and a novel co-simulation approach to identify the effect of stochastic noises on the cortex-BG-thalamus (CBGTH) brain network model in a large-scale brain connectome. We use Human Connectome Project (HCP) data to elucidate a stochastic influence on the brain network model. Furthermore, we choose areas of the parameter space that reflect both healthy and Parkinsonian states and the impact of deep brain stimulation (DBS) on the subthalamic nucleus and thalamus. We infer that thalamus activity increases with stochastic disturbances, even in the presence of DBS. We predicted that lowering the effect of stochastic noises would increase the healthy state of the brain. This work aims to unravel PD’s complicated neuronal activity dynamics, opening up new options for therapeutic intervention and tailored therapy.

Stochastic modelling of brain networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Salaramoli, S., Joshaghani, H.R., Hosseini, M., Hashemy, S.I.: Therapeutic effects of selenium on alpha-synuclein accumulation in substantia Nigra pars compacta in a rat model of Parkinson’s disease: behavioral and biochemical outcomes. Biol. Trace Element Res. 1–11 (2023)

    Google Scholar 

  2. Shaheen, H., Pal, S., Melnik, R.: Multiscale co-simulation of deep brain stimulation with brain networks in neurodegenerative disorders. Brain Multiphys. 3, 100058 (2022)

    Article  Google Scholar 

  3. Shaheen, H., Melnik, R., The Alzheimer’s Disease Neuroimaging Initiative: Bayesian inference and role of astrocytes in amyloid-beta dynamics with modelling of Alzheimer’s disease using clinical data. arXiv Preprint arXiv:2306.12520 (2023)

  4. Johnson, K.A., Okun, M.S., Scangos, K.W., Mayberg, H.S., de Hemptinne, C.: Deep brain stimulation for refractory major depressive disorder: a comprehensive review. Mol. Psychiatry 1–13 (2024)

    Google Scholar 

  5. Peralta, M., Jannin, P., Baxter, J.S.: Machine learning in deep brain stimulation: a systematic review. Artif. Intell. Med. 122, 10219 (2021)

    Article  Google Scholar 

  6. Tai, A.M., et al.: Machine learning and big data: implications for disease modelling and therapeutic discovery in psychiatry. Artif. Intell. Med. 99, 101704 (2019)

    Article  Google Scholar 

  7. Thieu, T.K.T., Melnik, R.: Coupled effects of channels and synaptic dynamics in stochastic modelling of healthy and Parkinson’s-disease-affected brains. AIMS Bioeng. 9(2), 213–238 (2022)

    Article  Google Scholar 

  8. Oliveira, A.M., Coelho, L., Carvalho, E., Ferreira-Pinto, M.J., Vaz, R., Aguiar, P.: Machine learning for adaptive deep brain stimulation in Parkinson’s disease: closing the loop. J. Neurol. 270(11), 5313–5326 (2023)

    Article  Google Scholar 

  9. Meier, J.M., et al.: Virtual deep brain stimulation: multiscale co-simulation of a spiking basal ganglia model and a whole-brain mean-field model with the virtual brain. Exp. Neurol. 114111 (2022)

    Google Scholar 

  10. Peng, G.C., et al.: Multiscale modeling meets machine learning: what can we learn? Arch. Comput. Methods Eng. 28(3), 1017–1037 (2021)

    Article  MathSciNet  Google Scholar 

  11. Seguin, C., Sporns, O., Zalesky, A.: Brain network communication: concepts, models and applications. Nat. Rev. Neurosci. 24(9), 557–74 (2023)

    Article  Google Scholar 

  12. Novelli, L., Friston, K., Razi, A.: Spectral dynamic causal modeling: a didactic introduction and its relationship with functional connectivity. Network Neurosci. 1–25 (2024)

    Google Scholar 

  13. Vashistha, R., et al.: ParaPET: noninvasive deep learning method for direct parametric brain PET reconstruction using histoimages. EJNMMI Res. 14(1), 10 (2024)

    Article  MathSciNet  Google Scholar 

  14. Woźniak, S., Pantazi, A., Bohnstingl, T., Eleftheriou, E.: Deep learning incorporating biologically inspired neural dynamics and in-memory computing. Nat. Mach. Intell. 2(6), 325–336 (2020)

    Article  Google Scholar 

  15. Shi, P., Li, J., Zhang, W., Li, M., Han, D.: Characteristic frequency detection of steady-state visual evoked potentials based on filter bank second-order underdamped tristable stochastic resonance. Biomed. Signal Process. Control 84, 104817 (2023)

    Article  Google Scholar 

  16. Liu, C., Wang, J., Deng, B., Li, H., Fietkiewicz, C., Loparo, K.A.: Noise-induced improvement of the Parkinsonian state: a computational study. IEEE Trans. Cybern. 49(10), 3655–3664 (2018)

    Article  Google Scholar 

  17. Charalambous, E., Djebbara, Z.: On natural attunement: shared rhythms between the brain and the environment. Neurosci. Biobehav. Rev. 155, 105438 (2023)

    Article  Google Scholar 

  18. Shaheen, H., Melnik, R.: Deep brain stimulation with a computational model for the cortex-thalamus-basal-ganglia system and network dynamics of neurological disorders. Comput. Math. Methods 2022, 8998150 (2022)

    Article  MathSciNet  Google Scholar 

  19. Zheng, Y., et al.: Noise improves the association between effects of local stimulation and structural degree of brain networks. PLoS Comput. Biol. 19(5), e1010866 (2023)

    Article  Google Scholar 

  20. Touboul, J.D., Piette, C., Venance, L., Ermentrout, G.B.: Noise-induced synchronization and antiresonance in interacting excitable systems: applications to deep brain stimulation in Parkinson’s disease. Phys. Rev. X 10(1), 011073 (2020)

    Google Scholar 

  21. Staffaroni, A.M., et al.: A longitudinal characterization of perfusion in the aging brain and associations with cognition and neural structure. Hum. Brain Mapp. 40(12), 3522–3533 (2019)

    Article  Google Scholar 

  22. Liang, J., Yang, Z., Zhou, C.: Excitation-inhibition balance, neural criticality, and activities in neuronal circuits. Neuroscientist 10738584231221766 (2024)

    Google Scholar 

  23. Seguin, C., Jedynak, M., David, O., Mansour, S., Sporns, O., Zalesky, A.: Communication dynamics in the human connectome shape the cortex-wide propagation of direct electrical stimulation. Neuron 111(9), 1391–1401 (2023)

    Article  Google Scholar 

  24. Carron, R., Chaillet, A., Filipchuk, A., Pasillas-Lépine, W., Hammond, C.: Closing the loop of deep brain stimulation. Front. Syst. Neurosci. 7, 112 (2013)

    Article  Google Scholar 

  25. Abós, A., et al.: Discriminating cognitive status in Parkinson’s disease through functional connectomics and machine learning. Sci. Rep. 7(1), 45347 (2017)

    Article  Google Scholar 

  26. Petersen, M.V., et al.: Holographic reconstruction of axonal pathways in the human brain. Neuron 104(6), 1056–1064 (2019)

    Article  Google Scholar 

  27. Rubin, J.E., Terman, D.: High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J. Comput. Neurosci. 16(3), 211–235 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hina Shaheen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shaheen, H., Melnik, R. (2024). Neural Dynamics in Parkinson’s Disease: Integrating Machine Learning and Stochastic Modelling with Connectomic Data. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14835. Springer, Cham. https://doi.org/10.1007/978-3-031-63772-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63772-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63771-1

  • Online ISBN: 978-3-031-63772-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics