Skip to main content

Parameter Tuning of the Firefly Algorithm by Standard Monte Carlo and Quasi-Monte Carlo Methods

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

Almost all optimization algorithms have algorithm-dependent parameters, and the setting of such parameter values can significantly influence the behavior of the algorithm under consideration. Thus, proper parameter tuning should be carried out to ensure that the algorithm used for optimization performs well and is sufficiently robust for solving different types of optimization problems. In this study, the Firefly Algorithm (FA) is used to evaluate the influence of its parameter values on its efficiency. Parameter values are randomly initialized using both the standard Monte Carlo method and the Quasi Monte-Carlo method. The values are then used for tuning the FA. Two benchmark functions and a spring design problem are used to test the robustness of the tuned FA. From the preliminary findings, it can be deduced that both the Monte Carlo method and Quasi-Monte Carlo method produce similar results in terms of optimal fitness values. Numerical experiments using the two different methods on both benchmark functions and the spring design problem showed no major variations in the final fitness values, irrespective of the different sample values selected during the simulations. This insensitivity indicates the robustness of the FA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cagnina, L.C., Esquivel, S.C., Coello, C.A.: Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica 32(3), 319–326 (2008)

    Google Scholar 

  2. de Lacerda, M.G.P., de Lima Neto, F.B., Ludermir, T.B., Kuchen, H.: Out-of-the-box parameter control for evolutionary and swarm-based algorithms with distributed reinforcement learning. Swarm Intel. 17, 173–217 (2023)

    Google Scholar 

  3. Srivastava, P.R., Malikarjun, B., Yang, X.-S.: Optimal test sequence generation using firefly algorithm. Swarm Evol. Comput. 8, 44–53 (2013)

    Article  Google Scholar 

  4. He, Z., Wang, X.: Convergence analysis of quasi-Monte Carlo sampling for quantile and expected shortfall. Math. Comput. 90(327), 303–319 (2021)

    Article  MathSciNet  Google Scholar 

  5. Hong, H.S., Hickernell, F.J.: Algorithm 823: implementing scrambled digital sequences. ACM Trans. Math. Softw. 29(2), 95–109 (2003)

    Article  MathSciNet  Google Scholar 

  6. Jamil, M., Yang, X.-S.: A literature survey of benchmark functions for global optimization problems. Int. J. Math. Model. Numer. Optim. 4(2), 150–194 (2013)

    Google Scholar 

  7. Rosenbrock, H.H.: An automatic method for finding the greatest or least value of a function. Comput. J. 175–184 (1960)

    Google Scholar 

  8. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

    Article  Google Scholar 

  9. Yang, X.-S., Deb, S., Loomes, M., Karamanoglu, M.: A framework for self-tuning optimization algorithm. Neural Comput. Appl. 23, 2051–2057 (2013)

    Google Scholar 

  10. Tatsis, V.A., Parsopoulos, K.E.: Dynamic parameter adaptation in metaheuristics using gradient approximation and line search. Appl. Soft Comput. 74, 368–384 (2019)

    Article  Google Scholar 

  11. Yoo, Y.: Hyperpameter optimization of deep neural network using univariate dynamic encoding algorithm for searches. Knowl.-Based Syst. 178(1), 74–83 (2019)

    Article  Google Scholar 

  12. Fishman, G.S.: Monte Carlo: Concepts, Algorithms and Applications. Springer, New York (1996). https://doi.org/10.1007/978-1-4757-2553-7

    Book  Google Scholar 

  13. Yang, X.-S., He, X.-S.: Mathematical Foundations of Nature-Inspired Algorithms. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16936-7

    Book  Google Scholar 

  14. Yang, X.-S.: Introduction to Computational Mathematics, 2nd edn. World Scientific Publishing Company, Singapore (2014)

    Google Scholar 

  15. Joy, G., Huyck, C., Yang, X.-S.: Review of parameter tuning methods for nature-inspired algorithms. In: Yang, X.-S. (ed.) Benchmarks and Hybrid Algorithms in Optimization and Applications. Springer Tracts in Nature-Inspired Computing, pp. 33–47. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-3970-1_3

    Chapter  Google Scholar 

  16. Sobol, I.M.: A Primer for the Monte Carlo Method. CRC Press, Boca Raton (2017)

    Google Scholar 

  17. Yang, X.-S., Slowik, A.: Firefly algorithm (chapter 13). In: Swarm Intelligence Algorithms. Swarm Intelligence Algorithms: Modifications and Applications. CRC Press, Boca Raton (2020)

    Google Scholar 

  18. Yang, X.-S.: Nature-Inspired Optimization Algorithms, 2nd edn. Academic Press, London (2020)

    Google Scholar 

  19. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04944-6_14

    Chapter  Google Scholar 

  20. Senthilnath, J., Omkar, S.N., Mani, V.: Clustering using firefly algorithm: performance study. Swarm Evol. Comput. 1(3), 164–171 (2011)

    Article  Google Scholar 

  21. Osaba, E., Yang, X.-S., Diaz, F., Onieva, E., Masegosa, A., Perallo, A.: A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy. Soft. Comput. 21(18), 5295–5308 (2017)

    Article  Google Scholar 

  22. Palmieri, N., Yang, X.-S., Rango, F.D., Santmaria, A.F.: Self-adaptive decision-making mechanisms to balance the execution of multiple tasks for a multi-robots team. Neurocomputing 306(1), 17–36 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geethu Joy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joy, G., Huyck, C., Yang, XS. (2024). Parameter Tuning of the Firefly Algorithm by Standard Monte Carlo and Quasi-Monte Carlo Methods. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14836. Springer, Cham. https://doi.org/10.1007/978-3-031-63775-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63775-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63774-2

  • Online ISBN: 978-3-031-63775-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics