Skip to main content

Neural Network as Transformation Function in Data Assimilation

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14836))

Included in the following conference series:

  • 482 Accesses

Abstract

Variational Data Assimilation (DA) is a technique aimed at mitigating the error in simulated states by integrating observations. Variational DA is widely employed in weather forecasting and hydrological modeling as an optimization technique for refining dynamic simulation states. However, when constructing the cost function in variational DA, it is necessary to establish a transformation function from simulated states to observations. When observations come from ground sensors or from remote sensing, representing such a transformation function with explicit expressions can sometimes be challenging or even impossible. Therefore, considering the strong mapping capabilities of Neural Network (NN)s in representing the relationship from simulated states to observations, this paper proposes a method utilizing a NN as the transformation function. We evaluate our method on a real dataset of river discharge in the UK and achieved a 39% enhancement in prediction accuracy, measured by Mean Square Error (MSE), compared to the results obtained without DA.

Supported by Resource Geophysics Academy, Imperial College London.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lahoz, W.A., Schneider, P.: Data assimilation: making sense of earth observation. Front. Environ. Sci. 2, 16 (2014)

    Article  Google Scholar 

  2. Cheng, S., et al.: Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review. IEEE/CAA J. Automatica Sin. 10(6), 1361–1387 (2023)

    Article  Google Scholar 

  3. Bannister, R.N.: A review of operational methods of variational and ensemble-variational data assimilation. Q. J. R. Meteorol. Soc. 143(703), 607–633 (2017)

    Article  Google Scholar 

  4. Reichle, R.H., McLaughlin, D.B., Entekhabi, D.: Variational data assimilation of microwave radiobrightness observations for land surface hydrology applications. IEEE Trans. Geosci. Remote Sens. 39(8), 1708–1718 (2001)

    Article  Google Scholar 

  5. Cheng, S., et al.: Error covariance tuning in variational data assimilation: application to an operating hydrological model. Stochast. Environ. Res. Risk Assess. 35(5), 1019–1038 (2021)

    Article  Google Scholar 

  6. Alvarado-Montero, R., et al.: Multi-parametric variational data assimilation for hydrological forecasting. Adv. Water Resour. 110, 182–192 (2017)

    Article  Google Scholar 

  7. Cheng, S., et al.: A graph clustering approach to localization for adaptive covariance tuning in data assimilation based on state-observation mapping. Math. Geosci. 53(8), 1751–1780 (2021)

    Article  MathSciNet  Google Scholar 

  8. Cheng, S., Qiu, M.: Observation error covariance specification in dynamical systems for data assimilation using recurrent neural networks. Neural Comput. Appl. 34(16), 13149–13167 (2022)

    Article  Google Scholar 

  9. Cheng, S., et al.: Generalised latent assimilation in heterogeneous reduced spaces with machine learning surrogate models. J. Sci. Comput. 94(1), 11 (2023)

    Article  MathSciNet  Google Scholar 

  10. May, R., Dandy, G., Maier, H.: Review of input variable selection methods for artificial neural networks. Artif. Neural Netw.-Methodol. Adv. Biomed. Appl. 10(1), 19–45 (2011)

    Google Scholar 

  11. Matthews, G., et al.: Evaluating the impact of post-processing medium-range ensemble streamflow forecasts from the European flood awareness system. Hydrol. Earth Syst. Sci. 26(11), 2939–2968 (2022)

    Article  Google Scholar 

  12. National river flow archive homepage. https://nrfa.ceh.ac.uk/. Accessed 7 Feb 2024

  13. Li, M., et al.: Efficient mini-batch training for stochastic optimization. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2014)

    Google Scholar 

  14. Johnson, O.V., et al.: ps-CALR: periodic-shift cosine annealing learning rate for deep neural networks. IEEE Access 11, 139171–139186 (2023)

    Article  Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Wang or Rossella Arcucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, K., D. Piggott, M., Wang, Y., Arcucci, R. (2024). Neural Network as Transformation Function in Data Assimilation. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14836. Springer, Cham. https://doi.org/10.1007/978-3-031-63775-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63775-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63774-2

  • Online ISBN: 978-3-031-63775-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics