Skip to main content

Adaptive Sampling Noise Mitigation Technique for Feedback-Based Quantum Algorithms

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

Inspired by Lyapunov control techniques for quantum systems, feedback-based quantum algorithms have recently been proposed as alternatives to variational quantum algorithms for solving quadratic unconstrained binary optimization problems. These algorithms update the circuit parameters layer-wise through feedback from measuring the qubits in the previous layer to estimate expectations of certain observables. Therefore, the number of samples directly affects the algorithm’s performance and may even cause divergence. In this work, we propose an adaptive technique to mitigate the sampling noise by adopting a switching control law in the design of the feedback-based algorithm. The proposed technique can lead to better performance and convergence properties. We show the robustness of our technique against sampling noise through an application for the maximum clique problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aleksandrowicz, G., et al.: Qiskit: an open-source framework for quantum computing (2019). Accessed 16 Mar 2019

    Google Scholar 

  2. Berg, V.D., et al.: Probabilistic error cancellation with sparse pauli–lindblad models on noisy quantum processors. Nat. Phys., 1–6 (2023)

    Google Scholar 

  3. Cerezo, M., et al.: Variational quantum algorithms. Nat. Rev. Phys. 3(9), 625–644 (2021)

    Article  Google Scholar 

  4. Chapuis, G., et al.: Finding maximum cliques on a quantum annealer. In: Proceedings of the Computing Frontiers Conference, pp. 63–70 (2017)

    Google Scholar 

  5. Chen, Y.C., et al.: Quantum imaginary-time control for accelerating the ground-state preparation. Phys. Rev. Res. 5(2), 023087 (2023)

    Article  Google Scholar 

  6. Cong, S., Meng, F.: A survey of quantum Lyapunov control methods. Sci. World J. (2013)

    Google Scholar 

  7. García-Pérez, G., et al.: Learning to measure: adaptive informationally complete generalized measurements for quantum algorithms. PRX quantum 2(4), 040342 (2021)

    Article  Google Scholar 

  8. Huang, H.Y., Kueng, R., Preskill, J.: Predicting many properties of a quantum system from very few measurements. Nat. Phys. 16(10), 1050–1057 (2020)

    Article  Google Scholar 

  9. Kuang, S., Dong, D., Petersen, I.R.: Rapid Lyapunov control of finite-dimensional quantum systems. Automatica 81, 164–175 (2017)

    Article  MathSciNet  Google Scholar 

  10. Larsen, J.B., Grace, M.D., Baczewski, A.D., Magann, A.B.: Feedback-based quantum algorithm for ground state preparation of the fermi-hubbard model. arXiv preprint arXiv:2303.02917 (2023)

  11. Magann, A.B., Rudinger, K.M., Grace, M.D., Sarovar, M.: Feedback-based quantum optimization. Phys. Rev. Lett. 129(25), 250502 (2022)

    Article  Google Scholar 

  12. Magann, A.B., Rudinger, K.M., Grace, M.D., Sarovar, M.: Lyapunov-control-inspired strategies for quantum combinatorial optimization. Phys. Rev. A 106(6), 062414 (2022)

    Article  MathSciNet  Google Scholar 

  13. McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S.C., Yuan, X.: Quantum computational chemistry. Rev. Mod. Phys. 92(1), 015003 (2020)

    Article  MathSciNet  Google Scholar 

  14. Simonetti, M., Perri, D., Gervasi, O.: Variational methods in optical quantum machine learning. IEEE Access (2023)

    Google Scholar 

  15. Wakeham, D., Ceroni, J.: Feedback-based quantum optimization (FALQON) (2021). https://pennylane.ai/qml/demos/tutorial_falqon/. Accessed 26 Feb 2024

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salahuddin Abdul Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdul Rahman, S., Clausen, H.G., Karabacak, Ö., Wisniewski, R. (2024). Adaptive Sampling Noise Mitigation Technique for Feedback-Based Quantum Algorithms. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14837. Springer, Cham. https://doi.org/10.1007/978-3-031-63778-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63778-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63777-3

  • Online ISBN: 978-3-031-63778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics