Abstract
Inspired by Lyapunov control techniques for quantum systems, feedback-based quantum algorithms have recently been proposed as alternatives to variational quantum algorithms for solving quadratic unconstrained binary optimization problems. These algorithms update the circuit parameters layer-wise through feedback from measuring the qubits in the previous layer to estimate expectations of certain observables. Therefore, the number of samples directly affects the algorithm’s performance and may even cause divergence. In this work, we propose an adaptive technique to mitigate the sampling noise by adopting a switching control law in the design of the feedback-based algorithm. The proposed technique can lead to better performance and convergence properties. We show the robustness of our technique against sampling noise through an application for the maximum clique problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aleksandrowicz, G., et al.: Qiskit: an open-source framework for quantum computing (2019). Accessed 16 Mar 2019
Berg, V.D., et al.: Probabilistic error cancellation with sparse pauli–lindblad models on noisy quantum processors. Nat. Phys., 1–6 (2023)
Cerezo, M., et al.: Variational quantum algorithms. Nat. Rev. Phys. 3(9), 625–644 (2021)
Chapuis, G., et al.: Finding maximum cliques on a quantum annealer. In: Proceedings of the Computing Frontiers Conference, pp. 63–70 (2017)
Chen, Y.C., et al.: Quantum imaginary-time control for accelerating the ground-state preparation. Phys. Rev. Res. 5(2), 023087 (2023)
Cong, S., Meng, F.: A survey of quantum Lyapunov control methods. Sci. World J. (2013)
García-Pérez, G., et al.: Learning to measure: adaptive informationally complete generalized measurements for quantum algorithms. PRX quantum 2(4), 040342 (2021)
Huang, H.Y., Kueng, R., Preskill, J.: Predicting many properties of a quantum system from very few measurements. Nat. Phys. 16(10), 1050–1057 (2020)
Kuang, S., Dong, D., Petersen, I.R.: Rapid Lyapunov control of finite-dimensional quantum systems. Automatica 81, 164–175 (2017)
Larsen, J.B., Grace, M.D., Baczewski, A.D., Magann, A.B.: Feedback-based quantum algorithm for ground state preparation of the fermi-hubbard model. arXiv preprint arXiv:2303.02917 (2023)
Magann, A.B., Rudinger, K.M., Grace, M.D., Sarovar, M.: Feedback-based quantum optimization. Phys. Rev. Lett. 129(25), 250502 (2022)
Magann, A.B., Rudinger, K.M., Grace, M.D., Sarovar, M.: Lyapunov-control-inspired strategies for quantum combinatorial optimization. Phys. Rev. A 106(6), 062414 (2022)
McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S.C., Yuan, X.: Quantum computational chemistry. Rev. Mod. Phys. 92(1), 015003 (2020)
Simonetti, M., Perri, D., Gervasi, O.: Variational methods in optical quantum machine learning. IEEE Access (2023)
Wakeham, D., Ceroni, J.: Feedback-based quantum optimization (FALQON) (2021). https://pennylane.ai/qml/demos/tutorial_falqon/. Accessed 26 Feb 2024
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Abdul Rahman, S., Clausen, H.G., Karabacak, Ö., Wisniewski, R. (2024). Adaptive Sampling Noise Mitigation Technique for Feedback-Based Quantum Algorithms. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14837. Springer, Cham. https://doi.org/10.1007/978-3-031-63778-0_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-63778-0_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-63777-3
Online ISBN: 978-3-031-63778-0
eBook Packages: Computer ScienceComputer Science (R0)