Abstract
While the majority of focus in quantum computing has so far been on monolithic quantum systems, quantum communication networks and the quantum internet in particular are increasingly receiving attention from researchers and industry alike. The quantum internet may allow a plethora of applications such as distributed or blind quantum computing, though research still is at an early stage, both for its physical implementation as well as algorithms; thus suitable applications are an open research question. We evaluate a potential application for the quantum internet, namely quantum federated learning. We run experiments under different settings in various scenarios (e.g. network constraints) using several datasets from different domains and show that (1) quantum federated learning is a valid alternative for regular training and (2) network topology and nature of training are crucial considerations as they may drastically influence the models performance. The results indicate that more comprehensive research is required to optimally deploy quantum federated learning on a potential quantum internet.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bergholm, V., et al.: Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968 (2018)
Caleffi, M., et al.: Distributed quantum computing: a survey. arXiv preprint arXiv:2212.10609 (2022)
Caleffi, M., Cacciapuoti, A.S., Bianchi, G.: Quantum internet: From communication to distributed computing! In: Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication, pp. 1–4 (2018)
Cerezo, M., et al.: Variational quantum algorithms. Nature Rev. Phys. 3(9), 625–644 (2021)
Chehimi, M., Chen, S.Y.C., Saad, W., Towsley, D., Debbah, M.: Foundations of Quantum Federated Learning Over Classical and Quantum Networks (Oct 2023). arXiv:2310.14516 [quant-ph]
Chen, S.Y.C., Yoo, S.: Federated quantum machine learning. Entropy 23(4), 460 (2021)
Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: A client level perspective. arXiv preprint arXiv:1712.07557 (2017)
Illiano, J., Caleffi, M., Manzalini, A., Cacciapuoti, A.S.: Quantum internet protocol stack: a comprehensive survey. Comput. Netw. 213, 109092 (2022)
Kimble, H.J.: The quantum internet. Nature 453(7198), 1023–1030 (2008)
Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)
Kozlowski, W., Wehner, S.: Towards large-scale quantum networks. In: Proceedings of the Sixth Annual ACM International Conference on Nanoscale Computing and Communication, pp. 1–7 (2019)
Li, C., Kumar, N., Song, Z., Chakrabarti, S., Pistoia, M.: Privacy-preserving quantum federated learning via gradient hiding (2023)
Li, W., Lu, S., Deng, D.L.: Quantum federated learning through blind quantum computing. Sci. China Phys., Mech. Astronomy 64(10), 100312 (2021). https://doi.org/10.1007/s11433-021-1753-3, arXiv:2103.08403 [quant-ph]
McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)
Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98(3), 032309 (2018)
Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge university press (2010)
Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Rofougaran, R., Yoo, S., Tseng, H.H., Chen, S.Y.C.: Federated Quantum Machine Learning with Differential Privacy (2023)
Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Phys. Rev. A 101(3), 032308 (2020)
Simon, C.: Towards a global quantum network. Nat. Photonics 11(11), 678–680 (2017)
Van Meter, R., et al.: A quantum internet architecture. In: 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 341–352. IEEE (2022)
Van Meter, R., Touch, J.: Designing quantum repeater networks. IEEE Commun. Mag. 51(8), 64–71 (2013)
Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. arXiv preprint arXiv:2002.06440 (2020)
Wang, T., Tseng, H.H., Yoo, S.: Quantum federated learning with quantum networks. arXiv preprint arXiv:2310.15084 (2023)
Watrous, J.: The theory of quantum information. Cambridge university press (2018)
Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: A vision for the road ahead. Science 362(6412), eaam9288 (2018)
Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms (2017)
Yang, J., et al.: Medmnist v2-a large-scale lightweight benchmark for 2D and 3D biomedical image classification. Sci. Data 10(1), 41 (2023)
Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)
Zhang, Y., Zhang, C., Zhang, C., Fan, L., Zeng, B., Yang, Q.: Federated Learning with Quantum Secure Aggregation (2023)
Acknowledgments
This work is sponsored in part by the Bavarian Ministry of Economic Affairs, Regional Development and Energy as part of the 6GQT project (https://6gqt.de)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sünkel, L., Kölle, M., Rohe, T., Gabor, T. (2024). Towards Federated Learning on the Quantum Internet. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14837. Springer, Cham. https://doi.org/10.1007/978-3-031-63778-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-63778-0_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-63777-3
Online ISBN: 978-3-031-63778-0
eBook Packages: Computer ScienceComputer Science (R0)