Skip to main content

Towards Federated Learning on the Quantum Internet

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14837))

Included in the following conference series:

  • 387 Accesses

Abstract

While the majority of focus in quantum computing has so far been on monolithic quantum systems, quantum communication networks and the quantum internet in particular are increasingly receiving attention from researchers and industry alike. The quantum internet may allow a plethora of applications such as distributed or blind quantum computing, though research still is at an early stage, both for its physical implementation as well as algorithms; thus suitable applications are an open research question. We evaluate a potential application for the quantum internet, namely quantum federated learning. We run experiments under different settings in various scenarios (e.g. network constraints) using several datasets from different domains and show that (1) quantum federated learning is a valid alternative for regular training and (2) network topology and nature of training are crucial considerations as they may drastically influence the models performance. The results indicate that more comprehensive research is required to optimally deploy quantum federated learning on a potential quantum internet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bergholm, V., et al.: Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968 (2018)

  2. Caleffi, M., et al.: Distributed quantum computing: a survey. arXiv preprint arXiv:2212.10609 (2022)

  3. Caleffi, M., Cacciapuoti, A.S., Bianchi, G.: Quantum internet: From communication to distributed computing! In: Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication, pp. 1–4 (2018)

    Google Scholar 

  4. Cerezo, M., et al.: Variational quantum algorithms. Nature Rev. Phys. 3(9), 625–644 (2021)

    Article  Google Scholar 

  5. Chehimi, M., Chen, S.Y.C., Saad, W., Towsley, D., Debbah, M.: Foundations of Quantum Federated Learning Over Classical and Quantum Networks (Oct 2023). arXiv:2310.14516 [quant-ph]

  6. Chen, S.Y.C., Yoo, S.: Federated quantum machine learning. Entropy 23(4), 460 (2021)

    Article  Google Scholar 

  7. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: A client level perspective. arXiv preprint arXiv:1712.07557 (2017)

  8. Illiano, J., Caleffi, M., Manzalini, A., Cacciapuoti, A.S.: Quantum internet protocol stack: a comprehensive survey. Comput. Netw. 213, 109092 (2022)

    Article  Google Scholar 

  9. Kimble, H.J.: The quantum internet. Nature 453(7198), 1023–1030 (2008)

    Article  Google Scholar 

  10. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  11. Kozlowski, W., Wehner, S.: Towards large-scale quantum networks. In: Proceedings of the Sixth Annual ACM International Conference on Nanoscale Computing and Communication, pp. 1–7 (2019)

    Google Scholar 

  12. Li, C., Kumar, N., Song, Z., Chakrabarti, S., Pistoia, M.: Privacy-preserving quantum federated learning via gradient hiding (2023)

    Google Scholar 

  13. Li, W., Lu, S., Deng, D.L.: Quantum federated learning through blind quantum computing. Sci. China Phys., Mech. Astronomy 64(10), 100312 (2021). https://doi.org/10.1007/s11433-021-1753-3, arXiv:2103.08403 [quant-ph]

  14. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  15. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98(3), 032309 (2018)

    Article  Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge university press (2010)

    Google Scholar 

  17. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  19. Rofougaran, R., Yoo, S., Tseng, H.H., Chen, S.Y.C.: Federated Quantum Machine Learning with Differential Privacy (2023)

    Google Scholar 

  20. Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Phys. Rev. A 101(3), 032308 (2020)

    Article  MathSciNet  Google Scholar 

  21. Simon, C.: Towards a global quantum network. Nat. Photonics 11(11), 678–680 (2017)

    Article  Google Scholar 

  22. Van Meter, R., et al.: A quantum internet architecture. In: 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 341–352. IEEE (2022)

    Google Scholar 

  23. Van Meter, R., Touch, J.: Designing quantum repeater networks. IEEE Commun. Mag. 51(8), 64–71 (2013)

    Article  Google Scholar 

  24. Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. arXiv preprint arXiv:2002.06440 (2020)

  25. Wang, T., Tseng, H.H., Yoo, S.: Quantum federated learning with quantum networks. arXiv preprint arXiv:2310.15084 (2023)

  26. Watrous, J.: The theory of quantum information. Cambridge university press (2018)

    Google Scholar 

  27. Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: A vision for the road ahead. Science 362(6412), eaam9288 (2018)

    Google Scholar 

  28. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms (2017)

    Google Scholar 

  29. Yang, J., et al.: Medmnist v2-a large-scale lightweight benchmark for 2D and 3D biomedical image classification. Sci. Data 10(1), 41 (2023)

    Article  Google Scholar 

  30. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  31. Zhang, Y., Zhang, C., Zhang, C., Fan, L., Zeng, B., Yang, Q.: Federated Learning with Quantum Secure Aggregation (2023)

    Google Scholar 

Download references

Acknowledgments

This work is sponsored in part by the Bavarian Ministry of Economic Affairs, Regional Development and Energy as part of the 6GQT project (https://6gqt.de)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Sünkel .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sünkel, L., Kölle, M., Rohe, T., Gabor, T. (2024). Towards Federated Learning on the Quantum Internet. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14837. Springer, Cham. https://doi.org/10.1007/978-3-031-63778-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63778-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63777-3

  • Online ISBN: 978-3-031-63778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics