Skip to main content

Deep Learning Residential Building Segmentation for Evaluation of Suburban Areas Development

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

Deep neural network models are commonly used in computer vision problems, e.g., image segmentation. Convolutional neural networks have been state-of-the-art methods in image processing, but new architectures, such as Transformer-based approaches, have started outperforming previous techniques in many applications. However, those techniques are still not commonly used in urban analyses, mostly performed manually. This paper presents a framework for the residential building semantic segmentation architecture as a tool for automatic urban phenomena monitoring. The method could improve urban decision-making processes with automatic city analysis, which is predisposed to be faster and even more accurate than those made by human researchers. The study compares the application of new deep network architectures with state-of-the-art solutions. The analysed problem is urban functional zone segmentation for the urban sprawl evaluation using targeted land cover map construction. The proposed method monitors the expansion of the city, which, uncontrolled, can cause adverse effects. The method was tested on photos from three residential districts. The first district has been manually segmented by functional zones and used for model training and evaluation. The other two districts have been used for automated segmentation by models’ inference to test the robustness of the methodology. The test resulted in 98.2% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bao, H., Ming, D., Guo, Y., Zhang, K., Zhou, K., Du, S.: DFCNN-based semantic recognition of urban functional zones by integrating remote sensing data and POI data. Remote Sens. 12(7), 1088 (2020). https://doi.org/10.3390/rs12071088

  2. Chen, S., Zhang, H., Yang, H.: Urban functional zone recognition integrating multisource geographic data. Remote Sens. 13(23) (2021).https://doi.org/10.3390/rs13234732

  3. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition June 2022, pp. 1280–1289 (2022). https://doi.org/10.1109/CVPR52688.2022.00135

  4. Chiguvi, D., Kgathi-Thite, D.: Analysis of the positive and negative effects of urban sprawl and dwelling transformation in urban cities: case study of Tati Siding Village in Botswana. J. Legal Ethical Regul. Issues 25(S2), 1–13 (2022)

    Google Scholar 

  5. Chu, X., et al.: Twins: revisiting the design of spatial attention in vision transformers. In: Advances in Neural Information Processing Systems, vol. 12(NeurIPS), pp. 9355–9366 (2021)

    Google Scholar 

  6. Cocheci, R.M., Petrisor, A.I.: Assessing the negative effects of suburbanization: the urban sprawl restrictiveness index in Romania’s metropolitan areas. Land 12(5) (2023) https://doi.org/10.3390/land12050966

  7. Deng, Y., He, R.: Refined urban functional zone mapping by integrating open-source data. ISPRS Int. J. Geo-Inf. 11(8) (2022) https://doi.org/10.3390/ijgi11080421

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=YicbFdNTTy

  9. Izzo, S., Prezioso, E., Giampaolo, F., Mele, V., Di Somma, V., Mei, G.: Classification of urban functional zones through deep learning. Neural Comput. Appl. 34(9), 6973–6990 (2022). https://doi.org/10.1007/s00521-021-06822-w

    Article  Google Scholar 

  10. Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics (2023). https://github.com/ultralytics/ultralytics

  11. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations. ICLR 2015 - Conference Track Proceedings, pp. 1–15 (2015)

    Google Scholar 

  12. Li, M., et al.: Method of building detection in optical remote sensing images based on SegFormer. Sensors 23(3) (2023). https://doi.org/10.3390/s23031258

  13. Lityński, P.: The intensity of urban sprawl in Poland. ISPRS Int. J. Geo-Inf. 10(2) (2021). https://doi.org/10.3390/ijgi10020095

  14. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9992–10002 (2021). https://doi.org/10.1109/ICCV48922.2021.00986

  15. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations. ICLR 2019 (2019)

    Google Scholar 

  16. Mansour, D., Souiah, S.A., El Amin Larabi, M.: Built-up area extraction through deep learning. In: 2021 IEEE International Geoscience and Remote Sensing Symposium. IGARSS, pp. 6805–6808 (2021). https://doi.org/10.1109/IGARSS47720.2021.9554694

  17. Niu, R., Sun, X., Tian, Y., Diao, W., Chen, K., Fu, K.: Hybrid multiple attention network for semantic segmentation in aerial images. IEEE Trans. Geosci. Remote Sens. 60, 1–18 (2022). https://doi.org/10.1109/TGRS.2021.3065112

    Article  Google Scholar 

  18. Pan, Z., Xu, J., Guo, Y., Hu, Y., Wang, G.: Deep learning segmentation and classification for urban village using a worldview satellite image based on U-net. Remote Sens. 12(10), 1–17 (2020). https://doi.org/10.3390/rs12101574

    Article  Google Scholar 

  19. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 12159–12168 (2021). https://doi.org/10.1109/ICCV48922.2021.01196

  20. Renata, R.C., Barbara, C., Andrzej, S.: Which polish cities sprawl the most. Land 10(12) (2021). https://doi.org/10.3390/land10121291

  21. Song, J., Zhu, A.X., Zhu, Y.: Transformer-based semantic segmentation for extraction of building footprints from very-high-resolution images. Sensors 23(11) (2023). https://doi.org/10.3390/s23115166

  22. Spirkova, D., Adamuscin, A., Golej, J., Panik, M.: Negative effects of urban sprawl. In: Charytonowicz, J. (ed.) AHFE 2020. AISC, vol. 1214, pp. 222–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51566-9_30

    Chapter  Google Scholar 

  23. Tao, J., et al.: Seg-road: a segmentation network for road extraction based on transformer and CNN with connectivity structures. Remote Sens. 15(6) (2023). https://doi.org/10.3390/rs15061602

  24. Tian, T., Chu, Z., Hu, Q., Ma, L.: Class-wise fully convolutional network for semantic segmentation of remote sensing images. Remote Sens. 13(16), 200–215 (2021). https://doi.org/10.3390/rs13163211

    Article  Google Scholar 

  25. Tsagkis, P., Bakogiannis, E., Nikitas, A.: Analysing urban growth using machine learning and open data: an artificial neural network modelled case study of five Greek cities. Sustain. Cities Soc. 89, 104337 (2023). https://doi.org/10.1016/j.scs.2022.104337

  26. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 548–558 (2021). https://doi.org/10.1109/ICCV48922.2021.00061

  27. Wang, Y., et al.: Mask DeepLab: end-to-end image segmentation for change detection in high-resolution remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 104, 102582 (2021). https://doi.org/10.1016/j.jag.2021.102582

    Article  Google Scholar 

  28. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. In: Advances in Neural Information Processing Systems, vol. 15, 12077–12090. NeurIPS (2021)

    Google Scholar 

  29. Yi, S., Liu, X., Li, J., Chen, L.: UAVformer: a composite transformer network for urban scene segmentation of UAV images. Pattern Recogn. 133 (2023). https://doi.org/10.1016/j.patcog.2022.109019

  30. Yin, B., et al.: How to accurately extract large-scale urban land? Establishment of an improved fully convolutional neural network model. Front. Earth Sci. 16(4) (2022). https://doi.org/10.1007/s11707-022-0985-2

  31. Zhang, X., Aliaga, D.: RFCNet: enhancing urban segmentation using regularization, fusion, and completion. Comput. Vis. Image Underst. 220(April), 103435 (2022). https://doi.org/10.1016/j.cviu.2022.103435

    Article  Google Scholar 

  32. Zhang, X., Li, W., Zhang, F., Liu, R., Du, Z.: Identifying urban functional zones using public bicycle rental records and point-of-interest data. ISPRS Int. J. Geo-Inf. 7(12) (2018). https://doi.org/10.3390/ijgi7120459

  33. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 6877–6886 (2021). https://doi.org/10.1109/CVPR46437.2021.00681

  34. Zhou, B., et al.: Semantic understanding of scenes through the ADE20K dataset. Int. J. Comput. Vision 127(3), 302–321 (2019). https://doi.org/10.1007/s11263-018-1140-0

    Article  Google Scholar 

  35. Zhou, W., Ming, D., Lv, X., Zhou, K., Bao, H., Hong, Z.: SO–CNN based urban functional zone fine division with VHR remote sensing image. Remote Sens. Environ. 236(November 2019), 111458 (2020).https://doi.org/10.1016/j.rse.2019.111458

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Łysak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Łysak, A., Luckner, M. (2024). Deep Learning Residential Building Segmentation for Evaluation of Suburban Areas Development. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14838. Springer, Cham. https://doi.org/10.1007/978-3-031-63783-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63783-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63785-8

  • Online ISBN: 978-3-031-63783-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics