Abstract
We introduce a novel metric for measuring semantic continuity in Explainable AI methods and machine learning models. We posit that for models to be truly interpretable and trustworthy, similar inputs should yield similar explanations, reflecting a consistent semantic understanding. By leveraging XAI techniques, we assess semantic continuity in the task of image recognition. We conduct experiments to observe how incremental changes in input affect the explanations provided by different XAI methods. Through this approach, we aim to evaluate the models’ capability to generalize and abstract semantic concepts accurately and to evaluate different XAI methods in correctly capturing the model behaviour. This paper contributes to the broader discourse on AI interpretability by proposing a quantitative measure for semantic continuity for XAI methods, offering insights into the models’ and explainers’ internal reasoning processes, and promoting more reliable and transparent AI systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brack, M., Friedrich, F., Hintersdorf, D., Struppek, L., Schramowski, P., Kersting, K.: SEGA: instructing text-to-image models using semantic guidance. In: Thirty-seventh Conference on Neural Information Processing Systems (2023). https://openreview.net/forum?id=KIPAIy329j
Cugny, R., Aligon, J., Chevalier, M., Roman Jimenez, G., Teste, O.: Autoxai: a framework to automatically select the most adapted xai solution. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 315–324 (2022)
Galli, A., Marrone, S., Moscato, V., Sansone, C.: Reliability of explainable artificial intelligence in adversarial perturbation scenarios. In: Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M., Escalante, H.J., Vezzani, R. (eds.) Pattern Recognition. ICPR International Workshops and Challenges. pp. 243–256. Springer, Cham (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)
Hedström, A.: Explainable Artificial Intelligence : How to Evaluate Explanations of Deep Neural Network Predictions using the Continuity Test. Master’s thesis, KTH, School of Electrical Engineering and Computer Science (EECS) (2020)
Hedström, A., et al.: Quantus: an explainable ai toolkit for responsible evaluation of neural network explanations and beyond. J. Mach. Learn. Res. 24(34), 1–11 (2023). http://jmlr.org/papers/v24/22-0142.html
Huang, W., Zhao, X., Jin, G., Huang, X.: Safari: versatile and efficient evaluations for robustness of interpretability. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1988–1998 (2023)
Kamath, S., Mittal, S., Deshpande, A., Balasubramanian, V.N.: Rethinking robustness of model attributions (2023)
Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93 (1938)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)
Kokhlikyan, N., et al.: Captum: A unified and generic model interpretability library for pytorch. arXiv preprint arXiv:2009.07896 (2020)
Le, P.Q., Nauta, M., Nguyen, V.B., Pathak, S., Schlötterer, J., Seifert, C.: Benchmarking explainable ai - a survey on available toolkits and open challenges. In: Elkind, E. (ed.) Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, pp. 6665–6673. International Joint Conferences on Artificial Intelligence Organization (8 2023). https://doi.org/10.24963/ijcai.2023/747, survey Track
Liu, Y., Khandagale, S., White, C., Neiswanger, W.: Synthetic benchmarks for scientific research in explainable machine learning. In: Advances in Neural Information Processing Systems Datasets Track (2021)
Liu, Y., Meijer, C., Oostrum, L.: Onnx model trained on the simple geometric dataset, January 2022. https://doi.org/10.5281/zenodo.5907059
Lopes, P., Silva, E., Braga, C., Oliveira, T., Rosado, L.: Xai systems evaluation: a review of human and computer-centred methods. Appl. Sci. 12(19), 9423 (2022)
Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. Advances in neural information processing systems 30 (2017)
Nauta, M., Seifert, C.: The co-12 recipe for evaluating interpretable part-prototype image classifiers. In: World Conference on Explainable Artificial Intelligence, pp. 397–420. Springer (2023)
Nauta, M., Trienes, J., Pathak, S., Nguyen, E., Peters, M., Schmitt, Y., Schlötterer, J., van Keulen, M., Seifert, C.: From anecdotal evidence to quantitative evaluation methods: a systematic review on evaluating explainable ai. ACM Comput. Surv. 55(13s), 1–42 (2023)
Oostrum, L., Liu, Y., Meijer, C., Ranguelova, E., Bos, P.: Simple geometric shapes, July 2021. https://doi.org/10.5281/zenodo.5012825
Park, C., et al.: VATUN: visual Analytics for Testing and Understanding Convolutional Neural Networks. In: Agus, M., Garth, C., Kerren, A. (eds.) EuroVis 2021 - Short Papers. The Eurographics Association (2021). https://doi.org/10.2312/evs.20211047
Pearson, K.: Notes on regression and inheritance in the case of two parents proceedings of the royal society of london, 58, 240–242. K Pearson (1895)
Petsiuk, V., Das, A., Saenko, K.: Rise: Randomized input sampling for explanation of black-box models. arXiv preprint arXiv:1806.07421 (2018)
Ranguelova, E., et al.: dianna. https://doi.org/10.5281/zenodo.5801485. https://github.com/dianna-ai/dianna
Ranguelova, E., et al.: Dianna: Deep insight and neural network analysis. J, Open Source Softw. 7(80), 4493 (2022). https://doi.org/10.21105/joss.04493
Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022
Samek, W.: Explainable deep learning: concepts, methods, and new developments. In: Explainable Deep Learning AI, pp. 7–33. Elsevier (2023)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
Shen, Y., Yang, C., Tang, X., Zhou, B.: Interfacegan: Interpreting the disentangled face representation learned by gans. TPAMI (2020)
Sietzen, S., Lechner, M., Borowski, J., Hasani, R., Waldner, M.: Interactive analysis of cnn robustness. Comput. Graph. Forum 40(7), 253–264 (2021). https://doi.org/10.1111/cgf.14418. https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14418
Spearman, C.: The proof and measurement of association between two things. Am. J. Psychol. 100(3/4), 441–471 (1987)
Stein, B.V., Raponi, E., Sadeghi, Z., Bouman, N., Van Ham, R.C.H.J., Bäck, T.: A comparison of global sensitivity analysis methods for explainable ai with an application in genomic prediction. IEEE Access 10, 103364–103381 (2022). https://doi.org/10.1109/ACCESS.2022.3210175
Székely, G.J., Rizzo, M.L., Bakirov, N.K.: Measuring and testing dependence by correlation of distances (2007)
Wu, S., Sang, J., Zhao, X., Chen, L.: An experimental study of semantic continuity for deep learning models (2020)
Yang, M., Kim, B.: Benchmarking Attribution Methods with Relative Feature Importance. CoRR abs/1907.09701 (2019)
Yang, W., Le, H., Savarese, S., Hoi, S.: Omnixai: A library for explainable ai (2022). https://doi.org/10.48550/ARXIV.2206.01612. https://arxiv.org/abs/2206.01612
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, Q. et al. (2024). Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI. In: Longo, L., Lapuschkin, S., Seifert, C. (eds) Explainable Artificial Intelligence. xAI 2024. Communications in Computer and Information Science, vol 2153. Springer, Cham. https://doi.org/10.1007/978-3-031-63787-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-63787-2_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-63786-5
Online ISBN: 978-3-031-63787-2
eBook Packages: Computer ScienceComputer Science (R0)