Abstract
Explanations in recommender systems play an essential role in enhancing transparency, trust, and persuasiveness. In that regard, Knowledge Graphs (KGs) model-agnostic explanations do not rely on user-inputted data such as reviews or require any changes in a recommendation algorithm to provide explanations. The state-of-the-art of model-agnostic KG explainable algorithms are based on syntactic approaches that consider the trade-off of attributes among the user-interacted items and the catalog to explain recommendations. In this study, we propose a novel model-agnostic KG algorithm for explanations. Our approach utilizes KG embeddings to rank explanations based on the path’s similarity to the user. Specifically, we train an embedding algorithm on a KG and compare path embeddings, composed of node and edge embeddings, to the user embedding derived from previously interacted item embeddings. Our proposed method is evaluated by comparing it against three baselines representing the state-of-the-art of KG explanation algorithms. We assess explanation quality using three metrics: diversity and popularity of attributes displayed in explanations and recency of interacted items. Results indicate that the embedding approach achieves a superior balance between attribute popularity and explanation diversity. Furthermore, our analysis emphasizes the importance of tailored metrics for evaluating explanations in recommender systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ali, M., et al.: PyKEEN 1.0: a python library for training and evaluating knowledge graph embeddings. J. Mach. Learn. Res. 22(82), 1–6 (2021)
Balloccu, G., Boratto, L., Fenu, G., Marras, M.: Post processing recommender systems with knowledge graphs for recency, popularity, and diversity of explanations. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 646–656 (2022)
Balog, K., Radlinski, F.: Measuring recommendation explanation quality: the conflicting goals of explanations. In: Proceedings of the 43rd international ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 329–338 (2020)
Bing, Q., Zhu, Q., Dou, Z.: Cognition-aware knowledge graph reasoning for explainable recommendation. In: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, pp. 402–410 (2023)
Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd workshop on information heterogeneity and fusion in recommender systems (HetRec 2011). In: Proceedings of the 5th ACM Conference on Recommender Systems, RecSys 2011. ACM, New York, NY, USA (2011)
Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., He, X.: Bias and debias in recommender system: a survey and future directions. ACM Trans. Inf. Syst. 41(3), 1–39 (2023)
Coba, L., Confalonieri, R., Zanker, M.: RecoXplainer: a library for development and offline evaluation of explainable recommender systems. IEEE Comput. Intell. Mag. 17(1), 46–58 (2022)
Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pp. 39–46. Association for Computing Machinery, New York, NY, USA (2010)
Da Costa, A., Fressato, E., Neto, F., Manzato, M., Campello, R.: Case recommender: a flexible and extensible python framework for recommender systems. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 494–495 (2018)
Di Noia, T., Tintarev, N., Fatourou, P., Schedl, M.: Recommender systems under European AI regulations. Commun. ACM 65(4), 69–73 (2022)
Dijkstra, E.W., et al.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)
Du, Y., Ranwez, S., Sutton-Charani, N., Ranwez, V.: Post-hoc recommendation explanations through an efficient exploitation of the DBpedia category hierarchy. Knowl. Based Syst. 245, 108560 (2022)
Ferrari Dacrema, M., Boglio, S., Cremonesi, P., Jannach, D.: A troubling analysis of reproducibility and progress in recommender systems research. ACM Trans. Inf. Syst. (TOIS) 39(2), 1–49 (2021)
Geng, S., Fu, Z., Tan, J., Ge, Y., De Melo, G., Zhang, Y.: Path language modeling over knowledge graphsfor explainable recommendation. In: Proceedings of the ACM Web Conference 2022, pp. 946–955 (2022)
Hada, D.V., Shevade, S.K.: ReXPlug: explainable recommendation using plug-and-play language model. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 81–91 (2021)
Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TIIS) 5(4), 1–19 (2015)
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, WWW 2017, pp. 173–182. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (2017)
Jannach, D., Jugovac, M.: Measuring the business value of recommender systems. ACM Trans. Manage. Inf. Syst. (TMIS) 10(4), 1–23 (2019)
Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press (2010)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980
Kouki, P., Schaffer, J., Pujara, J., O’Donovan, J., Getoor, L.: Personalized explanations for hybrid recommender systems. In: Proceedings of the 24th International Conference on Intelligent User Interfaces, pp. 379–390 (2019)
Li, Y., Chen, H., Li, Y., Li, L., Philip, S.Y., Xu, G.: Reinforcement learning based path exploration for sequential explainable recommendation. IEEE Trans. Knowl. Data Eng. 35(11), pp. 11801–11814 (2023)
Ma, T., Huang, L., Lu, Q., Hu, S.: KR-GCN: knowledge-aware reasoning with graph convolution network for explainable recommendation. ACM Trans. Inf. Syst. 41(1), 1–27 (2023)
Montagna, A., De Biasio, A., Navarin, N., Aiolli, F., et al.: Graph-based explainable recommendation systems: are we rigorously evaluating explanations? In: Proceedings of the Workshop on User Perspectives in Human-Centred Artificial Intelligence (2023)
Musto, C., Narducci, F., Lops, P., De Gemmis, M., Semeraro, G.: ExpLOD: a framework for explaining recommendations based on the linked open data cloud. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 151–154 (2016)
Musto, C., Narducci, F., Lops, P., de Gemmis, M., Semeraro, G.: Linked open data-based explanations for transparent recommender systems. Int. J. Hum. Comput. Stud. 121, 93–107 (2019)
Nunes, I., Jannach, D.: A systematic review and taxonomy of explanations in decision support and recommender systems. User Model. User-Adap. Inter. 27, 393–444 (2017)
Peng, C., Xia, F., Naseriparsa, M., Osborne, F.: Knowledge graphs: opportunities and challenges. Artif. Intell. Rev. 56(11), 1–32 (2023). https://doi.org/10.1007/s10462-023-10465-9
Pillai, S.G., Soon, L.-K., Haw, S.-C.: Comparing DBpedia, Wikidata, and YAGO for web information retrieval. In: Piuri, V., Balas, V.E., Borah, S., Syed Ahmad, S.S. (eds.) Intelligent and Interactive Computing. LNNS, vol. 67, pp. 525–535. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6031-2_40
Rana, A., D’Addio, R.M., Manzato, M.G., Bridge, D.: Extended recommendation-by-explanation. User Model. User-Adap. Inter. 32(1–2), 91–131 (2022)
Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2009, pp. 452–461. AUAI Press (2009)
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, CSCW 1994, pp. 175–186. Association for Computing Machinery (1994)
Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and Challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 1–34. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_1
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)
Steck, H.: Embarrassingly shallow autoencoders for sparse data. In: The World Wide Web Conference, WWW 2019, pp. 3251–3257. Association for Computing Machinery, New York, NY, USA (2019)
Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: Knowledge graph embedding by relational rotation in complex space (2019). arXiv preprint arXiv:1902.10197
Sun, Z., Yang, J., Zhang, J., Bozzon, A., Huang, L.K., Xu, C.: Recurrent knowledge graph embedding for effective recommendation. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 297–305 (2018)
Tchuente, D., Lonlac, J., Kamsu-Foguem, B.: A methodological and theoretical framework for implementing explainable artificial intelligence (XAI) in business applications. Comput. Ind. 155, 104044 (2024)
Tintarev, N., Masthoff, J.: Explaining recommendations: design and evaluation. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 353–382. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_10
Werneck, H., Santos, R., Silva, N., Pereira, A.C., Mourão, F., Rocha, L.: Effective and diverse poi recommendations through complementary diversification models. Expert Syst. Appl. 175, 114775 (2021)
Xu, Z., Zeng, H., Tan, J., Fu, Z., Zhang, Y., Ai, Q.: A reusable model-agnostic framework for faithfully explainable recommendation and system scrutability. ACM Trans. Inf. Syst. (2023)
Yang, Y., Zhang, C., Song, X., Dong, Z., Zhu, H., Li, W.: Contextualized knowledge graph embedding for explainable talent training course recommendation. ACM Trans. Inf. Syst. 42(2), 1–27 (2023)
Yang, Y., Huang, C., Xia, L., Huang, C.: Knowledge graph self-supervised rationalization for recommendation. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3046–3056 (2023)
Zanon, A.L., da Rocha, L.C.D., Manzato, M.G.: Balancing the trade-off between accuracy and diversity in recommender systems with personalized explanations based on linked open data. Knowl. Based Syst. 252, 109333 (2022)
Zhang, Q., Wang, R., Yang, J., Xue, L.: Knowledge graph embedding by reflection transformation. Knowl. Based Syst. 238, 107861 (2022)
Zhang, Q., Wang, R., Yang, J., Xue, L.: Structural context-based knowledge graph embedding for link prediction. Neurocomputing 470, 109–120 (2022)
Zhang, Y., Chen, X., et al.: Explainable recommendation: a survey and new perspectives. Found. Trends® Inf. Retrieval 14(1), 1–101 (2020)
Acknowledgments
The authors acknowledge CAPES, CNPq, Fapesp (2022/07016-9), AWS and Fapemig for their funding and support of this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Appendices
Appendix 1 - Recommender Systems Algorithms Metrics
(See Table 9)
Appendix 2 - RotatE KG Embedding Training Statistics
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zanon, A.L., da Rocha, L.C.D., Manzato, M.G. (2024). Model-Agnostic Knowledge Graph Embedding Explanations for Recommender Systems. In: Longo, L., Lapuschkin, S., Seifert, C. (eds) Explainable Artificial Intelligence. xAI 2024. Communications in Computer and Information Science, vol 2154. Springer, Cham. https://doi.org/10.1007/978-3-031-63797-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-63797-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-63796-4
Online ISBN: 978-3-031-63797-1
eBook Packages: Computer ScienceComputer Science (R0)