Skip to main content

Model-Agnostic Knowledge Graph Embedding Explanations for Recommender Systems

  • Conference paper
  • First Online:
Explainable Artificial Intelligence (xAI 2024)

Abstract

Explanations in recommender systems play an essential role in enhancing transparency, trust, and persuasiveness. In that regard, Knowledge Graphs (KGs) model-agnostic explanations do not rely on user-inputted data such as reviews or require any changes in a recommendation algorithm to provide explanations. The state-of-the-art of model-agnostic KG explainable algorithms are based on syntactic approaches that consider the trade-off of attributes among the user-interacted items and the catalog to explain recommendations. In this study, we propose a novel model-agnostic KG algorithm for explanations. Our approach utilizes KG embeddings to rank explanations based on the path’s similarity to the user. Specifically, we train an embedding algorithm on a KG and compare path embeddings, composed of node and edge embeddings, to the user embedding derived from previously interacted item embeddings. Our proposed method is evaluated by comparing it against three baselines representing the state-of-the-art of KG explanation algorithms. We assess explanation quality using three metrics: diversity and popularity of attributes displayed in explanations and recency of interacted items. Results indicate that the embedding approach achieves a superior balance between attribute popularity and explanation diversity. Furthermore, our analysis emphasizes the importance of tailored metrics for evaluating explanations in recommender systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/andlzanon/lod-personalized-recommender.

  2. 2.

    https://www.wikidata.org.

  3. 3.

    https://www.dbpedia.org/.

References

  1. Ali, M., et al.: PyKEEN 1.0: a python library for training and evaluating knowledge graph embeddings. J. Mach. Learn. Res. 22(82), 1–6 (2021)

    Google Scholar 

  2. Balloccu, G., Boratto, L., Fenu, G., Marras, M.: Post processing recommender systems with knowledge graphs for recency, popularity, and diversity of explanations. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 646–656 (2022)

    Google Scholar 

  3. Balog, K., Radlinski, F.: Measuring recommendation explanation quality: the conflicting goals of explanations. In: Proceedings of the 43rd international ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 329–338 (2020)

    Google Scholar 

  4. Bing, Q., Zhu, Q., Dou, Z.: Cognition-aware knowledge graph reasoning for explainable recommendation. In: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, pp. 402–410 (2023)

    Google Scholar 

  5. Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd workshop on information heterogeneity and fusion in recommender systems (HetRec 2011). In: Proceedings of the 5th ACM Conference on Recommender Systems, RecSys 2011. ACM, New York, NY, USA (2011)

    Google Scholar 

  6. Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., He, X.: Bias and debias in recommender system: a survey and future directions. ACM Trans. Inf. Syst. 41(3), 1–39 (2023)

    Google Scholar 

  7. Coba, L., Confalonieri, R., Zanker, M.: RecoXplainer: a library for development and offline evaluation of explainable recommender systems. IEEE Comput. Intell. Mag. 17(1), 46–58 (2022)

    Article  Google Scholar 

  8. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pp. 39–46. Association for Computing Machinery, New York, NY, USA (2010)

    Google Scholar 

  9. Da Costa, A., Fressato, E., Neto, F., Manzato, M., Campello, R.: Case recommender: a flexible and extensible python framework for recommender systems. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 494–495 (2018)

    Google Scholar 

  10. Di Noia, T., Tintarev, N., Fatourou, P., Schedl, M.: Recommender systems under European AI regulations. Commun. ACM 65(4), 69–73 (2022)

    Article  Google Scholar 

  11. Dijkstra, E.W., et al.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  12. Du, Y., Ranwez, S., Sutton-Charani, N., Ranwez, V.: Post-hoc recommendation explanations through an efficient exploitation of the DBpedia category hierarchy. Knowl. Based Syst. 245, 108560 (2022)

    Article  Google Scholar 

  13. Ferrari Dacrema, M., Boglio, S., Cremonesi, P., Jannach, D.: A troubling analysis of reproducibility and progress in recommender systems research. ACM Trans. Inf. Syst. (TOIS) 39(2), 1–49 (2021)

    Article  Google Scholar 

  14. Geng, S., Fu, Z., Tan, J., Ge, Y., De Melo, G., Zhang, Y.: Path language modeling over knowledge graphsfor explainable recommendation. In: Proceedings of the ACM Web Conference 2022, pp. 946–955 (2022)

    Google Scholar 

  15. Hada, D.V., Shevade, S.K.: ReXPlug: explainable recommendation using plug-and-play language model. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 81–91 (2021)

    Google Scholar 

  16. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TIIS) 5(4), 1–19 (2015)

    Google Scholar 

  17. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, WWW 2017, pp. 173–182. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (2017)

    Google Scholar 

  18. Jannach, D., Jugovac, M.: Measuring the business value of recommender systems. ACM Trans. Manage. Inf. Syst. (TMIS) 10(4), 1–23 (2019)

    Article  Google Scholar 

  19. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press (2010)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980

  21. Kouki, P., Schaffer, J., Pujara, J., O’Donovan, J., Getoor, L.: Personalized explanations for hybrid recommender systems. In: Proceedings of the 24th International Conference on Intelligent User Interfaces, pp. 379–390 (2019)

    Google Scholar 

  22. Li, Y., Chen, H., Li, Y., Li, L., Philip, S.Y., Xu, G.: Reinforcement learning based path exploration for sequential explainable recommendation. IEEE Trans. Knowl. Data Eng. 35(11), pp. 11801–11814 (2023)

    Google Scholar 

  23. Ma, T., Huang, L., Lu, Q., Hu, S.: KR-GCN: knowledge-aware reasoning with graph convolution network for explainable recommendation. ACM Trans. Inf. Syst. 41(1), 1–27 (2023)

    Article  Google Scholar 

  24. Montagna, A., De Biasio, A., Navarin, N., Aiolli, F., et al.: Graph-based explainable recommendation systems: are we rigorously evaluating explanations? In: Proceedings of the Workshop on User Perspectives in Human-Centred Artificial Intelligence (2023)

    Google Scholar 

  25. Musto, C., Narducci, F., Lops, P., De Gemmis, M., Semeraro, G.: ExpLOD: a framework for explaining recommendations based on the linked open data cloud. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 151–154 (2016)

    Google Scholar 

  26. Musto, C., Narducci, F., Lops, P., de Gemmis, M., Semeraro, G.: Linked open data-based explanations for transparent recommender systems. Int. J. Hum. Comput. Stud. 121, 93–107 (2019)

    Article  Google Scholar 

  27. Nunes, I., Jannach, D.: A systematic review and taxonomy of explanations in decision support and recommender systems. User Model. User-Adap. Inter. 27, 393–444 (2017)

    Article  Google Scholar 

  28. Peng, C., Xia, F., Naseriparsa, M., Osborne, F.: Knowledge graphs: opportunities and challenges. Artif. Intell. Rev. 56(11), 1–32 (2023). https://doi.org/10.1007/s10462-023-10465-9

  29. Pillai, S.G., Soon, L.-K., Haw, S.-C.: Comparing DBpedia, Wikidata, and YAGO for web information retrieval. In: Piuri, V., Balas, V.E., Borah, S., Syed Ahmad, S.S. (eds.) Intelligent and Interactive Computing. LNNS, vol. 67, pp. 525–535. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6031-2_40

    Chapter  Google Scholar 

  30. Rana, A., D’Addio, R.M., Manzato, M.G., Bridge, D.: Extended recommendation-by-explanation. User Model. User-Adap. Inter. 32(1–2), 91–131 (2022)

    Article  Google Scholar 

  31. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2009, pp. 452–461. AUAI Press (2009)

    Google Scholar 

  32. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, CSCW 1994, pp. 175–186. Association for Computing Machinery (1994)

    Google Scholar 

  33. Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and Challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 1–34. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_1

    Chapter  Google Scholar 

  34. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  35. Steck, H.: Embarrassingly shallow autoencoders for sparse data. In: The World Wide Web Conference, WWW 2019, pp. 3251–3257. Association for Computing Machinery, New York, NY, USA (2019)

    Google Scholar 

  36. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: Knowledge graph embedding by relational rotation in complex space (2019). arXiv preprint arXiv:1902.10197

  37. Sun, Z., Yang, J., Zhang, J., Bozzon, A., Huang, L.K., Xu, C.: Recurrent knowledge graph embedding for effective recommendation. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 297–305 (2018)

    Google Scholar 

  38. Tchuente, D., Lonlac, J., Kamsu-Foguem, B.: A methodological and theoretical framework for implementing explainable artificial intelligence (XAI) in business applications. Comput. Ind. 155, 104044 (2024)

    Article  Google Scholar 

  39. Tintarev, N., Masthoff, J.: Explaining recommendations: design and evaluation. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 353–382. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_10

    Chapter  Google Scholar 

  40. Werneck, H., Santos, R., Silva, N., Pereira, A.C., Mourão, F., Rocha, L.: Effective and diverse poi recommendations through complementary diversification models. Expert Syst. Appl. 175, 114775 (2021)

    Article  Google Scholar 

  41. Xu, Z., Zeng, H., Tan, J., Fu, Z., Zhang, Y., Ai, Q.: A reusable model-agnostic framework for faithfully explainable recommendation and system scrutability. ACM Trans. Inf. Syst. (2023)

    Google Scholar 

  42. Yang, Y., Zhang, C., Song, X., Dong, Z., Zhu, H., Li, W.: Contextualized knowledge graph embedding for explainable talent training course recommendation. ACM Trans. Inf. Syst. 42(2), 1–27 (2023)

    Article  Google Scholar 

  43. Yang, Y., Huang, C., Xia, L., Huang, C.: Knowledge graph self-supervised rationalization for recommendation. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3046–3056 (2023)

    Google Scholar 

  44. Zanon, A.L., da Rocha, L.C.D., Manzato, M.G.: Balancing the trade-off between accuracy and diversity in recommender systems with personalized explanations based on linked open data. Knowl. Based Syst. 252, 109333 (2022)

    Article  Google Scholar 

  45. Zhang, Q., Wang, R., Yang, J., Xue, L.: Knowledge graph embedding by reflection transformation. Knowl. Based Syst. 238, 107861 (2022)

    Article  Google Scholar 

  46. Zhang, Q., Wang, R., Yang, J., Xue, L.: Structural context-based knowledge graph embedding for link prediction. Neurocomputing 470, 109–120 (2022)

    Article  Google Scholar 

  47. Zhang, Y., Chen, X., et al.: Explainable recommendation: a survey and new perspectives. Found. Trends® Inf. Retrieval 14(1), 1–101 (2020)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge CAPES, CNPq, Fapesp (2022/07016-9), AWS and Fapemig for their funding and support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Levi Zanon .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Appendices

Appendix 1 - Recommender Systems Algorithms Metrics

(See Table 9)

Table 9. Mean accuracy and beyond accuracy metrics for the MovieLens100k and LastFM datasets on a 10-fold cross-validation. Bold values are the highest for a dataset. The NCF algorithms do not have beyond accuracy metrics because the leave-one-out evaluation was used as proposed in the original paper.

Appendix 2 - RotatE KG Embedding Training Statistics

Table 10. Metrics for the training and testing of the RotatE KG embeddings.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zanon, A.L., da Rocha, L.C.D., Manzato, M.G. (2024). Model-Agnostic Knowledge Graph Embedding Explanations for Recommender Systems. In: Longo, L., Lapuschkin, S., Seifert, C. (eds) Explainable Artificial Intelligence. xAI 2024. Communications in Computer and Information Science, vol 2154. Springer, Cham. https://doi.org/10.1007/978-3-031-63797-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63797-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63796-4

  • Online ISBN: 978-3-031-63797-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics