Skip to main content

Model Guidance via Explanations Turns Image Classifiers into Segmentation Models

  • Conference paper
  • First Online:
Explainable Artificial Intelligence (xAI 2024)

Abstract

Heatmaps generated on inputs of image classification networks via explainable AI methods like Grad-CAM and LRP have been observed to resemble segmentations of input images in many cases. Consequently, heatmaps have also been leveraged for achieving weakly supervised segmentation with image-level supervision. On the other hand, losses can be imposed on differentiable heatmaps, which has been shown to serve for (1) improving heatmaps to be more human-interpretable, (2) regularization of networks towards better generalization, (3) training diverse ensembles of networks, and (4) for explicitly ignoring confounding input features. Due to the latter use case, the paradigm of imposing losses on heatmaps is often referred to as “Right for the right reasons”. We unify these two lines of research by investigating semi-supervised segmentation as a novel use case for the Right for the Right Reasons paradigm. First, we show formal parallels between differentiable heatmap architectures and standard encoder-decoder architectures for image segmentation. Second, we show that such differentiable heatmap architectures yield competitive results when trained with standard segmentation losses. Third, we show that such architectures allow for training with weak supervision in the form of image-level labels and small numbers of pixel-level labels, outperforming comparable encoder-decoder models. Code is available at https://github.com/Kainmueller-Lab/TW-autoencoder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achtibat, R., et al.: From attribution maps to human-understandable explanations through concept relevance propagation. Nat. Mach. Intell. 5, 1006–1019 (2023)

    Article  Google Scholar 

  2. Alvi, M., Zisserman, A., Nellåker, C.: Turning a blind eye: explicit removal of biases and variation from deep neural network embeddings. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 556–572. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_34

    Chapter  Google Scholar 

  3. Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks. arXiv preprint arXiv:1711.06104 (2017)

  4. Anders, C.J., Weber, L., Neumann, D., Samek, W., Müller, K.R., Lapuschkin, S.: Finding and removing clever hans: using explanation methods to debug and improve deep models. Inform. Fusion 77, 261–295 (2022)

    Article  Google Scholar 

  5. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Article  Google Scholar 

  6. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: Mixmatch: a holistic approach to semi-supervised learning. Adv. Neural Information Process Syst. 32 (2019)

    Google Scholar 

  7. Drucker, H., Le Cun, Y.: Improving generalization performance using double backpropagation. IEEE Trans. Neural Netw. 3(6), 991–997 (1992)

    Article  Google Scholar 

  8. Du, Y., Fu, Z., Liu, Q., Wang, Y.: Weakly supervised semantic segmentation by pixel-to-prototype contrast. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4320–4329 (2022)

    Google Scholar 

  9. Etmann, C.: A closer look at double backpropagation. arXiv preprint arXiv:1906.06637 (2019)

  10. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88, 303–338 (2010)

    Article  Google Scholar 

  11. Gur, S., Ali, A., Wolf, L.: Visualization of supervised and self-supervised neural networks via attribution guided factorization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11545–11554 (2021)

    Google Scholar 

  12. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  13. Kim, B., Han, S., Kim, J.: Discriminative region suppression for weakly-supervised semantic segmentation. CoRR arXiv: 2103.07246 (2021)

  14. Kim, H.E., Hwang, S.: Deconvolutional feature stacking for weakly-supervised semantic segmentation. arXiv preprint arXiv:1602.04984 (2016)

  15. Kim, S., Nguyen, L.T., Shim, K., Kim, J., Shim, B.: Pseudo-label-free weakly supervised semantic segmentation using image masking. IEEE Access 10, 19401–19411 (2022)

    Article  Google Scholar 

  16. Lai, X., et al.: Semi-supervised semantic segmentation with directional context-aware consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1205–1214 (2021)

    Google Scholar 

  17. Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., Müller, K.R.: Unmasking clever hans predictors and assessing what machines really learn. Nat. Commun. 10(1), 1096 (2019)

    Article  Google Scholar 

  18. Lee, J., Kim, E., Lee, S., Lee, J., Yoon, S.: Ficklenet: weakly and semi-supervised semantic image segmentation using stochastic inference. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019)

    Google Scholar 

  19. Li, K., Wu, Z., Peng, K.C., Ernst, J., Fu, Y.: Tell me where to look: guided attention inference network. In: Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, pp. 9215–9223 (2018)

    Google Scholar 

  20. Liu, F., Avci, B.: Incorporating priors with feature attribution on text classification. arXiv preprint arXiv:1906.08286 (2019)

  21. Liu, S., Zhi, S., Johns, E., Davison, A.: Bootstrapping semantic segmentation with regional contrast. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=6u6N8WWwYSM

  22. Luo, W., Yang, M.: Semi-supervised semantic segmentation via strong-weak dual-branch network. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part V 16, pp. 784–800. Springer (2020). https://doi.org/10.1007/978-981-99-4761-4_22

  23. Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.-R.: Layer-wise relevance propagation: an overview. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 193–209. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_10

    Chapter  Google Scholar 

  24. Nam, W.J., Gur, S., Choi, J., Wolf, L., Lee, S.W.: Relative attributing propagation: Interpreting the comparative contributions of individual units in deep neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 2501–2508 (2020)

    Google Scholar 

  25. Ouali, Y., Hudelot, C., Tami, M.: Semi-supervised semantic segmentation with cross-consistency training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12674–12684 (2020)

    Google Scholar 

  26. Pan, J., et al.: Learning self-supervised low-rank network for single-stage weakly and semi-supervised semantic segmentation. Int. J. Comput. Vis. 130(5), 1181–1195 (2022)

    Article  Google Scholar 

  27. Rao, S., Böhle, M., Parchami-Araghi, A., Schiele, B.: Using explanations to guide models. arXiv preprint arXiv:2303.11932 (2023)

  28. Rieger, L., Singh, C., Murdoch, W., Yu, B.: Interpretations are useful: penalizing explanations to align neural networks with prior knowledge. In: International Conference on Machine Learning, pp. 8116–8126. PMLR (2020)

    Google Scholar 

  29. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  30. Ross, A.S., Hughes, M.C., Doshi-Velez, F.: Right for the right reasons: training differentiable models by constraining their explanations. arXiv preprint arXiv:1703.03717 (2017)

  31. Schramowski, P., et al.: Making deep neural networks right for the right scientific reasons by interacting with their explanations. Nat. Mach. Intell. 2(8), 476–486 (2020)

    Article  Google Scholar 

  32. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  33. Shakya, S., Vasquez, M., Wang, Y., Tchoua, R., Furst, J., Raicu, D.: Human-in-the-loop deep learning retinal image classification with customized loss function. In: Medical Imaging 2022: Computer-Aided Diagnosis, vol. 12033, pp. 512–519. SPIE (2022)

    Google Scholar 

  34. Shao, X., Skryagin, A., Stammer, W., Schramowski, P., Kersting, K.: Right for better reasons: Training differentiable models by constraining their influence functions. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 9533–9540 (2021)

    Google Scholar 

  35. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. Adv. Neural. Inf. Process. Syst. 33, 596–608 (2020)

    Google Scholar 

  36. Teney, D., Abbasnejad, E., Lucey, S., van den Hengel, A.: Evading the simplicity bias: Training a diverse set of models discovers solutions with superior ood generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16761–16772 (2022)

    Google Scholar 

  37. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12) (2010)

    Google Scholar 

  38. Weber, L., Lapuschkin, S., Binder, A., Samek, W.: Beyond explaining: Opportunities and challenges of xai-based model improvement. Inform. Fus. 92, 154–176 (2023)

    Article  Google Scholar 

  39. Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., Huang, T.S.: Revisiting dilated convolution: A simple approach for weakly-and semi-supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7268–7277 (2018)

    Google Scholar 

Download references

Acknowledgments

Funding: X.Y.: Helmholtz Einstein International Berlin Research School in Data Science (HEIBRiDS); J.F.: German Research Foundation RTG 2424. W.S. and D.K.: German Research Foundation as grant DFG KI-FOR 5363, project no. 459422098.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyan Yu or Dagmar Kainmueller .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interest

The authors declare that they have no conflicts of interest related to this work.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, X., Franzen, J., Samek, W., Höhne, M.MC., Kainmueller, D. (2024). Model Guidance via Explanations Turns Image Classifiers into Segmentation Models. In: Longo, L., Lapuschkin, S., Seifert, C. (eds) Explainable Artificial Intelligence. xAI 2024. Communications in Computer and Information Science, vol 2154. Springer, Cham. https://doi.org/10.1007/978-3-031-63797-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63797-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63796-4

  • Online ISBN: 978-3-031-63797-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics