Abstract
Remote Sensing has been widely used for monitoring forests, namely for the retrieval of structural parameters such as the Forest Height (FH). The reason behind the use of remote sensing is the fact that measuring the FH through field campaigns is expensive and non-scalable. The resort to Airborne Laser Scanning campaigns, despite its high accuracy, have the same limitations. Therefore, Synthetic Aperture Radar (SAR) and Multispectral sensors carried by spaceborne platforms are widely used to address this problem. This paper evaluates the effects of combining a dataset that includes multifrequency backscatter (L and C bands) and multispectral variables, with Interferometric SAR (InSAR) variables (Coherence and Phase) for FH mapping resorting to a locally calibrated regression methodology. To make it more suitable for operational scenarios, only free access data is used, and the calibration sets are small. The scope of this study is the Mediterranean forests, and it has achieved a R2/RMSE ranging from 50.33–72.01%/1.55–2.50m in the validation and 56.22–75.48%/0.77–2.34 m for the operational scenarios. The addition of the InSAR variables leads to an improvement of 0.63% in the R2 and 0.02m in the RMSE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gomez, C., et al.: Canopy height estimation in mediterranean forests of spain with TanDEM-X data. IEEE J. Selected Topics Appli. Earth Observat. Remote Sensing 14, 2956–2970 (2021). https://doi.org/10.1109/JSTARS.2021.3060691
Parache, H.B., et al.: Estimating forest stand height in Savannakhet, Lao PDR using inSAR and backscatter methods with L-band SAR data. Remote Sens. 13(22), 1–22 (2021). https://doi.org/10.3390/rs13224516
Bruggisser, M., et al.: Potential of sentinel-1 c-band time series to derive structural parameters of temperate deciduous forests. Remote Sens. 13(4), 1–30 (2021). https://doi.org/10.3390/rs13040798
Frey, O., Meier, E.: Analyzing tomographic SAR data of a forest with respect to frequency, polarization, and focusing technique. IEEE Trans. Geosci. Remote Sens. 49(10 PART 1), 3648–3659 (2011). https://doi.org/10.1109/TGRS.2011.2125972
Mao, Y., et al.: Retrieval of boreal forest heights using an improved random volume over ground (Rvog) model based on repeat-pass spaceborne polarimetric sar interferometry: The case study of saihanba, china. Remote Sens. 13(21) (2021). https://doi.org/10.3390/rs132143068
Chen, W., Zheng, Q., Xiang, H., Chen, X., Sakai, T.: Forest canopy height estimation using polarimetric interferometric synthetic aperture radar (Polinsar) technology based on full-polarized alos/palsar data. Remote Sens. 13(2), 1–21 (2021). https://doi.org/10.3390/rs13020174
Simard, M., Denbina, M.: An assessment of temporal decorrelation compensation methods for forest canopy height estimation using airborne L-band same-day repeat-pass polarimetric SAR interferometry. IEEE J. Selected Topics in Appli. Earth Observat. Remote Sens. 11(1), 95–111 (2018). https://doi.org/10.1109/JSTARS.2017.2761338
Chen, W., Zheng, Q., Xiang, H., Chen, X., Sakai, T.: Forest canopy height estimation using polarimetric interferometric synthetic aperture radar (Polinsar) technology based on full-polarized alos/palsar data. Remote Sens. 13(2), 1–21 (2021). https://doi.org/10.3390/rs13020174
Bolton, D.K., et al.: Optimizing Landsat time series length for regional mapping of lidar-derived forest structure. Remote Sens. Environ. 239(2019), 111645 (2020). https://doi.org/10.1016/j.rse.2020.111645
Astola, H., Häme, T., Sirro, L., Molinier, M., Kilpi, J.: Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sens. Environ. 223(2017), 257–273 v. https://doi.org/10.1016/j.rse.2019.01.019
Radke, D., Radke, D., Radke, J.: Beyond measurement: Extracting vegetation height from high resolution imagery with deep learning. Remote Sens. 12(22), 1–22 (2020). https://doi.org/10.3390/rs12223797
Pereira-Pires, J. E., Mora, A., Aubard, V., Silva, J.M.N., Fonseca, J.M.: Assessment of Sentinel-2 Spectral Features to Estimate Forest Height with the New GEDI Data, pp. 123–131 (2021). https://doi.org/10.1007/978-3-030-78288-7_12
Brede, B., Lau, A., Bartholomeus, H.M., Kooistra, L.: Comparing RIEGL RiCOPTER UAV LiDAR derived canopy height and DBH with terrestrial LiDAR. Sensors (Switzerland) 17(10), 1–16 (2017). https://doi.org/10.3390/s17102371
Fayad, I., et al.: A CNN-based approach for the estimation of canopy heights and wood volume from GEDI waveforms. Remote Sens. Environ. 265, 112652 (2021)
Pourshamsi, M., et al.: Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning. ISPRS J. Photogrammetry Remote Sens. 172(2020), 79–94 (2021). https://doi.org/10.1016/j.isprsjprs.2020.11.008
Potapov, P., et al.: Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165 (2021)
Fagua, J. C., Jantz, P., Rodriguez-Buritica, S., Duncanson, L., Goetz, S.J.: Integrating LiDAR, multispectral and SAR data to estimate and map canopy height in tropical forests. Remote Sens. 11(22) (2019). https://doi.org/10.3390/rs11222697
Pereira-Pires, J.E., Guida, R., Silva, J.M.N., Mora, A., Fonseca, J.M.: Forest Height Estimation Using Sentinel-1/2 and ALOS-2. In: 2023 8th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), pp. 1–6 (2023). https://doi.org/10.1109/APSAR58496.2023.10388740
Khati, U., Singh, G., Kumar, S.: Potential of space-borne polinsar for forest canopy height estimation over India - a case study using fully polarimetric L-, C-, and X-Band SAR Data. IEEE J. Selected Topics Appli. Earth Observat. Remote Sens. 11(7), 2406–2416 (2018). https://doi.org/10.1109/JSTARS.2018.2835388
Acknowledgement
Research Units, Centre of Technology and Systems (CTS) (UIDB/ 00066/2020), Forest Research Centre (UIDB/00239/2020), and the Surrey Space Centre at University of Surrey. João Eduardo Pereira-Pires acknowledges the Fundação para a Ciência e Tecnologia for the Ph.D. Grant 2020.05015.BD.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Pereira-Pires, J.E., Mora, A., Guida, R., Fonseca, J.M., Silva, J.M.N., Barreira, P. (2024). Mapping Forest Height with Multifrequency SAR, InSAR, and Multispectral Datasets. In: Camarinha-Matos, L.M., Ferrada, F. (eds) Technological Innovation for Human-Centric Systems. DoCEIS 2024. IFIP Advances in Information and Communication Technology, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-031-63851-0_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-63851-0_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-63850-3
Online ISBN: 978-3-031-63851-0
eBook Packages: Computer ScienceComputer Science (R0)