Skip to main content

Researching Multi-Site Artificial Neural Networks’ Activation Rates and Activation Cycles

  • Conference paper
  • First Online:
Business Modeling and Software Design (BMSD 2024)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 523))

Included in the following conference series:

  • 224 Accesses

Abstract

With the further development of more and more production machines into cyber-physical systems, and their greater integration with artificial intelligence (AI) techniques, the coordination of intelligent systems is a highly relevant target factor for the operation and improvement of networked processes, such as they can be found in cross-organizational production contexts spanning multiple distributed locations. This work aims to extend prior research on managing their artificial knowledge transfers as coordination instrument by examining effects of different activation types (respective activation rates and cycles) on by Artificial Neural Network (ANN)-instructed production machines. For this, it provides a new integration type of ANN-based cyber-physical production system as a tool to research artificial knowledge transfers: In a design-science-oriented way, a prototype of a simulation system is constructed as Open Source information system which will be used in on-building research to (I) enable research on ANN activation types in production networks, (II) illustrate ANN-based production networks disrupted by activation types and clarify the need for harmonizing them, and (III) demonstrate conceptual management interventions. This simulator shall establish the importance of site-specific coordination mechanisms and novel forms of management interventions as drivers of efficient artificial knowledge transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bergweiler, S.: Smart factory systems–fostering cloud-based manufacturing based on self-monitoring cyber-physical systems, development, vol. 2, p. 3, 2016

    Google Scholar 

  2. Zanero, S.: Cyber-physical systems. Computer 50(4), 14–16 (2017)

    Article  Google Scholar 

  3. Pivoto, D. G., et al.: Cyber-physical systems architectures for industrial internet of things applications in industry 4.0: a literature review, J. Manufact. Syst., vol. 58, pp. 176–192 (2021)

    Google Scholar 

  4. Riedl, M., Zipper, H., Meier, M., Diedrich, C.: Cyber-physical systems alter automation architectures. Annu. Rev. Control. 38(1), 123–133 (2014)

    Article  Google Scholar 

  5. Mazumder, S.K., et al.: A review of current research trends in power-electronic innovations in cyber-physical systems. IEEE J. Emerg. Sel. Top. Power Electron. 9(5), 5146–5163 (2021)

    Article  Google Scholar 

  6. Bartelt, M., Stecken, J., Kuhlenkötter, B.: Automated production of individualized products for teaching i4. 0 concepts. Procedia Manuf. 45, 337–342 (2020)

    Article  Google Scholar 

  7. Gronau, N., Grum, M., Bender, B.: Determining the optimal level of autonomy in cyber-physical production systems, In: 2016 IEEE 14th International Conference on Industrial Informatics (INDIN), pp. 1293–1299, 7 2016

    Google Scholar 

  8. Grum, M., Bender, B., Gronau, N., Alfa, A. S.: Efficient task realizations in networked production infrastructures, In: Proceedings of the Conference on Production Systems and Logistics: CPSL 2020, Hannover: publish-Ing., (2020)

    Google Scholar 

  9. Grum, M.: Construction of a Concept of Neuronal Modeling. Potsdam University, (2021)

    Google Scholar 

  10. Grum, M., Thim, C., Roling, W.M.., Schueffler, A., Kluge, A., Gronau, N.: AI Case-Based Reasoning for Artificial Neural Networks. In: Masrour, T., El Hassani, I., Barka, N. (eds.) Artificial Intelligence and Industrial Applications: Smart Operation Management, pp. 17–35. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-43524-9_2

    Chapter  Google Scholar 

  11. Grum, M., Thim, C., Gronau, N.: Aiming for knowledge-transfer-optimizing intelligent cyber-physical systems. In: Andersen, A.L. (ed.) CARV/MCPC–2021. LNME, pp. 149–157. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-90700-6_16

  12. Bender, B., Grum, M., Gronau, N., Alfa, A., Maharaj, B.T.: Design of a worldwide simulation system for distributed cyber-physical production networks. In: 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 1–7. IEEE (2019)

    Google Scholar 

  13. Grum, M.: Construction of a Concept of Neuronal Modeling. Springer (2022)

    Google Scholar 

  14. Deng, J., et al.: Microglia-mediated inflammatory destruction of neuro-cardiovascular dysfunction after stroke. Front. Cell. Neurosci. 17, 1117218 (2023)

    Article  Google Scholar 

  15. Grum, M.: Managing human and artificial knowledge bearers: the creation of a symbiotic knowledge management approach. In: Business Modeling and Software Design: 10th International Symposium, BMSD 2020, Berlin, Germany, July 6-8, 2020, Proceedings 10, pp. 182–201, Springer (2020)

    Google Scholar 

  16. Peffers, K., et al.: The design science research process: a model for producing and presenting information systems research. In: 1st International Conference on Design Science in Information Systems and Technology (DESRIST), vol. 24, pp. 83–106 (2006)

    Google Scholar 

  17. Gronau, N., Grum, M.: Towards a prediction of time consumption during knowledge transfer. In: Knowledge Transfer Speed Optimizations in Product Development Contexts. Empirical Studies of Business Informatics, GITO, pp. 25 – 69 (2019)

    Google Scholar 

  18. Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation. Oxford University Press (1995)

    Google Scholar 

  19. Bishop, C.: Neural Networks for Pattern Recognition. Clarendon Press, vol. 2, pp. 223–228 (1995)

    Google Scholar 

  20. Grum, M.: NMDL repository, November 2020. https://github.com/MarcusGrum/CoNM/tree/main/meta-models/nmdl, version 1.0.0

  21. Ashton, K.: That “Internet of Things’’ thing: in the real world things matter more than ideas. RFID J. 22(7), 97–114 (2009)

    Google Scholar 

  22. Khaitan, S.K.: Design techniques and applications of cyberphysical systems: a survey. IEEE Syst. J. 9(2), 350–365 (2015)

    Article  Google Scholar 

  23. Veigt, M., Lappe, D., Hribernik, K.: Development of a cyber-physical logistic system (in German). Industrie Manage. 1(2013), 15–18 (2013)

    Google Scholar 

  24. Krallmann, H., Bobrik, A., Levina, O.: Systemanalyse im Unternehmen: Prozessorientierte Methoden der Wirtschaftsinformatik. Oldenbourg Wissenschaftsverlag Verlag (2013)

    Google Scholar 

  25. Fuchs-Wegner, G.: Verfahren der Analyse von Systemen. RIAS (1971)

    Google Scholar 

  26. Besancon, R.: The Encyclopedia of Physics. Springer, New York (2013)

    Google Scholar 

  27. Haase, R.: Thermodynamik. Grundzüge der Physikalischen Chemie in Einzeldarstellungen, Steinkopff (2013)

    Google Scholar 

  28. Heim, G., Heim, S.: Rhetos Lexikon der Physik und Philosophie (2018)

    Google Scholar 

  29. Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540(4), 167–218 (2014)

    Google Scholar 

  30. Moreno-Bote, R., Rinzel, J., Rubin, N.: Noise-induced alternations in an attractor network model of perceptual bistability. J. Neurophysiol. 98(3), 1125–1139 (2007)

    Article  Google Scholar 

  31. Gigante, G., Mattia, M., Braun, J., Del Giudice, P.: Bistable perception modeled as competing stochastic integrations at two levels. PLoS Comput. Biol. 5(7), e1000430 (2009)

    Article  MathSciNet  Google Scholar 

  32. Braun, J., Mattia, M.: Attractors and noise: twin drivers of decisions and multistability. Neuroimage 52(3), 740–751 (2010)

    Article  Google Scholar 

  33. Kim, S., Park, S.H., Ryu, C.: Multistability in coupled oscillator systems with time delay. Phys. Rev. Lett. 79(15), 2911 (1997)

    Article  Google Scholar 

  34. Park, S.H., Kim, S., Pyo, H.-B., Lee, S.: Multistability analysis of phase locking patterns in an excitatory coupled neural system. Phys. Rev. E 60(2), 2177 (1999)

    Article  Google Scholar 

  35. Foss, J., Longtin, A., Mensour, B., Milton, J.: Multistability and delayed recurrent loops. Phys. Rev. Lett. 76(4), 708 (1996)

    Article  Google Scholar 

  36. Uhlemann, T.H.-J., Schock, C., Lehmann, C., Freiberger, S., Steinhilper, R.: The digital twin: demonstrating the potential of real time data acquisition in production systems. Procedia Manuf. 9, 113–120 (2017)

    Article  Google Scholar 

  37. Doyle, F., Cosgrove, J.: Steps towards digitization of manufacturing in an SME environment. Procedia Manuf. 38, 540–547 (2019)

    Article  Google Scholar 

  38. Lampropoulos, G., Siakas, K., Anastasiadis, T.: Internet of Things in the context of industry 4.0: an overview. Int. J. Entrepreneurial Knowl. 7, 4–19 (2019)

    Article  Google Scholar 

  39. Grum, M., Bender, B., Alfa, A.S., Gronau, N.: A decision maxim for efficient task realization within analytical network infrastructures. Decis. Support Syst. 112, 48–59 (2018)

    Article  Google Scholar 

  40. Grum, M.: Context-aware, intelligent musical instruments for improving knowledge-intensive business processes. In: International Symposium on Business Modeling and Software Design, pp. 69–88, Springer (2022)

    Google Scholar 

  41. Grum, M.: Managing multi-site artificial neural networks’ activation rates and activation cycles. In: Business Modeling and Software Design: 14th International Symposium, BMSD 2024, Luxembourg, pp. 1–10, Springer (2024)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Grum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grum, M. (2024). Researching Multi-Site Artificial Neural Networks’ Activation Rates and Activation Cycles. In: Shishkov, B. (eds) Business Modeling and Software Design. BMSD 2024. Lecture Notes in Business Information Processing, vol 523. Springer, Cham. https://doi.org/10.1007/978-3-031-64073-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64073-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64072-8

  • Online ISBN: 978-3-031-64073-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics