Skip to main content

Deep Generative Modeling

  • Textbook
  • © 2024
  • Latest edition

Overview

  • Comprehensive explanation of Generative AI techniques, providing code snippets for all presented models
  • Revised and expanded edition with new chapters on LLMs, Gen AI systems, and Probabilistic Modeling
  • Includes new coverage on Transformers and introduces Probabilistic Circuits

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This first comprehensive book on models behind Generative AI has been thoroughly revised to cover all major classes of deep generative models: mixture models, Probabilistic Circuits, Autoregressive Models, Flow-based Models, Latent Variable Models, GANs, Hybrid Models, Score-based Generative Models, Energy-based Models, and Large Language Models. In addition, Generative AI Systems are discussed, demonstrating how deep generative models can be used for neural compression, among others.

Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics of machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It should find interest among students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics who wish to get familiar with deep generative modeling.
In order to engage with a reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on the author's GitHub site: github.com/jmtomczak/intro_dgm

The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.

 

 

 

Keywords

Table of contents (11 chapters)

Authors and Affiliations

  • Eindhoven University of Technology, Eindhoven, The Netherlands

    Jakub M. Tomczak

About the author

Jakub M. Tomczak is an associate professor and the head of the Generative AI group at the Eindhoven University of Technology (TU/e). Before joining the TU/e, he was an assistant professor at Vrije Universiteit Amsterdam, a deep learning researcher (Engineer, Staff) in Qualcomm AI Research in Amsterdam, a Marie Sklodowska-Curie individual fellow in Prof. Max Welling's group at the University of Amsterdam, and an assistant professor and a postdoc at the Wroclaw University of Technology. His main research interests include ML, DL, deep generative modeling (GenAI), and Bayesian inference, with applications to image/text processing, Life Sciences, Molecular Sciences, and quantitative finance. He serves as an action editor of "Transactions of Machine Learning Research", and an area chair of major AI conferences (e.g., NeurIPS, ICML, AISTATS). He is a program chair of NeurIPS 2024. He is the author of the book entitled "Deep Generative Modeling", the first comprehensive book on Generative AI. He is also the founder of Amsterdam AI Solutions.

Bibliographic Information

  • Book Title: Deep Generative Modeling

  • Authors: Jakub M. Tomczak

  • DOI: https://doi.org/10.1007/978-3-031-64087-2

  • Publisher: Springer Cham

  • eBook Packages: Computer Science, Computer Science (R0)

  • Copyright Information: The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

  • Hardcover ISBN: 978-3-031-64086-5Published: 11 September 2024

  • Softcover ISBN: 978-3-031-64089-6Due: 25 September 2025

  • eBook ISBN: 978-3-031-64087-2Published: 10 September 2024

  • Edition Number: 2

  • Number of Pages: XXIII, 313

  • Number of Illustrations: 9 b/w illustrations, 170 illustrations in colour

  • Topics: Artificial Intelligence, Machine Learning, Probability and Statistics in Computer Science, Simulation and Modeling

Publish with us