Abstract
The rapid advancements in quantum computing necessitate a scientific and rigorous approach to the construction of a corresponding software ecosystem, a topic underexplored and primed for systematic investigation. This chapter takes an important step in this direction. It presents scientific considerations essential for building a quantum software ecosystem that makes quantum computing available for scientific and industrial problem-solving. Central to this discourse is the concept of hardware–software co-design, which fosters a bidirectional feedback loop from the application layer at the top of the software stack down to the hardware. This approach begins with compilers and low-level software that are specifically designed to align with the unique specifications and constraints of the quantum processor, proceeds with algorithms developed with a clear understanding of underlying hardware and computational model features, and extends to applications that effectively leverage the capabilities to achieve a quantum advantage. We analyze the ecosystem from two critical perspectives: the conceptual view, focusing on theoretical foundations, and the technical infrastructure, addressing practical implementations around real quantum devices necessary for a functional ecosystem. This approach ensures that the focus is toward promising applications with optimized algorithm–circuit synergy, while ensuring a user-friendly design, an effective data management, and an overall orchestration. This chapter thus offers a guide to the essential concepts and practical strategies necessary for developing a scientifically grounded quantum software ecosystem.
Chapter PDF
Similar content being viewed by others
References
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). https://doi.org/10.1137/S0097539795293172
Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073 (1996). https://doi.org/10.1126/science.273.5278.1073
Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009). https://doi.org/10.1103/PhysRevLett.103.150502
Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355 (1998). https://doi.org/10.1103/PhysRevE.58.5355
Byrd, G.T., Ding, Y.: Quantum computing: progress and innovation. Computer 56(01), 20 (2023). https://doi.org/10.1109/MC.2022.3217021
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G.S.L., Buell, D.A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, S., Harrigan, M.P., Hartmann, M.J., Ho, A., Hoffmann, M., Huang, T., Humble, T.S., Isakov, S.V., Jeffrey, E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P.V., Knysh, S., Korotkov, A., Kostritsa, F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandrà, S., McClean, J.R., McEwen, M., Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu, M.Y., Ostby, E., Petukhov, A., Platt, J.C., Quintana, C., Rieffel, E.G., Roushan, P., Rubin, N.C., Sank, D., Satzinger, K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D., Vainsencher, A., Villalonga, B., White, T., Yao, Z.J., Yeh, P., Zalcman, A., Neven, H., Martinis, J.M.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505 (2019). https://doi.org/10.1038/s41586-019-1666-5
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79
Temkin, M.. Investors bet on the technologically unproven field of quantum computing. https://pitchbook.com/news/articles/quantum-computing-venture-capital-funding. Accessed 04 Oct 2023
Cohen-Tannoudji, C., Diu, B., Laloe, F.: Quantum Mechanics. Textbook Physics, vol. 1, 1st edn. Wiley, Hoboken (1991)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9780511976667
Schuhmacher, P.K: Decoherence as a resource for quantum information. Ph.D. Thesis, Universität des Saarlandes (2021). https://doi.org/10.22028/D291-35131
DiVincenzo, D.P.: The physical implementation of quantum computation. Fortschritte der Physik Progr. Phys. 48(9–11), 771 (2000). https://doi.org/10.1002/1521-3978(200009)48:9/11%3C771::AID-PROP771%3E3.0.CO;2-E
Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74, 4087 (1995). https://doi.org/10.1103/PhysRevLett.74.4087
Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. Preprint (2000). https://doi.org/10.48550/arXiv.quant-ph/0001106
Born, M., Fock, V.: Beweis des Adiabatensatzes. Zeitschrift für Physik 51(3–4), 165–180 (1928). https://doi.org/10.1007/BF01343193
Van Dam, W., Mosca, M., Vazirani, U.: Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pp. 279–287. IEEE, Piscataway (2001). https://doi.org/10.1109/SFCS.2001.959902
Aharonov, D., Van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Rev. 50(4), 755 (2008). https://doi.org/10.1137/080734479
Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Modern Phys. 90(1), 015002 (2018). https://doi.org/10.1103/RevModPhys.90.015002
Pfeuty, P.: The one-dimensional Ising model with a transverse field. Ann. Phys. 57, 79 (1970). https://doi.org/10.1016/0003-4916(70)90270-8
Fauseweh, B., Uhrig, G.S.: Multiparticle spectral properties in the transverse field Ising model by continuous unitary transformations. Phys. Rev. B 87, 184406 (2013). https://doi.org/10.1103/PhysRevB.87.184406
Johnson, M.W., Amin, M.H., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194 (2011). https://doi.org/10.1038/nature10012
Jünger, M., Lobe, E., Mutzel, P., Reinelt, G., Rendl, F., Rinaldi, G., Stollenwerk, T.: Quantum annealing versus digital computing: an experimental comparison. J. Exper. Algorithmics 26, 1 (2021). https://doi.org/10.1145/3459606
McGeoch, C.C.: Theory versus practice in annealing-based quantum computing. Theoret. Comput. Sci. 816, 169 (2020). https://doi.org/10.1016/j.tcs.2020.01.024
Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001). https://doi.org/10.1103/PhysRevLett.86.5188
Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46 (2001). https://doi.org/10.1038/35051009
Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005). https://doi.org/10.1103/PhysRevLett.95.010501
Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993). https://doi.org/10.1103/PhysRevA.48.1687
Kempe, J.: Quantum random walks: An introductory overview. Contemp. Phys. 44(4), 307 (2003). https://doi.org/10.1080/00107151031000110776
Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’03, pp. 59–68. Association for Computing Machinery, New York (2003). https://doi.org/10.1145/780542.780552
Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009). https://doi.org/10.1103/PhysRevLett.102.180501
Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81, 042330 (2010). https://doi.org/10.1103/PhysRevA.81.042330
Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC ’01, pp. 50–59. Association for Computing Machinery, New York (2001). https://doi.org/10.1145/380752.380758
Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998). https://doi.org/10.1103/PhysRevA.58.915
Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum walks on graphs representing the firing patterns of a quantum neural network. Phys. Rev. A 89, 032333 (2014). https://doi.org/10.1103/PhysRevA.89.032333
Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014). https://doi.org/10.1103/PhysRevLett.113.130503
Mohseni, M., Rebentrost, P., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129(17), 174106 (2008). https://doi.org/10.1063/1.3002335
Whitfield, J.D., Rodríguez-Rosario, C.A., Aspuru-Guzik, A.: Quantum stochastic walks: A generalization of classical random walks and quantum walks. Phys. Rev. A 81, 022323 (2010). https://doi.org/10.1103/PhysRevA.81.022323
Govia, L.C.G., Taketani, B.G., Schuhmacher, P.K., Wilhelm, F.K.: Quantum simulation of a quantum stochastic walk. Quant. Sci. Technol. 2(1), 015002 (2017). https://doi.org/10.1088/2058-9565/aa540b
Schuhmacher, P.K., Govia, L.C.G., Taketani, B.G., Wilhelm, F.K.: Quantum simulation of a discrete-time quantum stochastic walk. Europhys. Lett. 133(5), 50003 (2021). https://doi.org/10.1209/0295-5075/133/50003
Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. Proc. Lond. Mathemat. Soc. 2(1), 230 (1937). https://doi.org/10.1112/plms/s2-42.1.230
NobelPrize.org. Nobel Prize Outreach AB 2023. The nobel prize in physics 1956. https://www.nobelprize.org/prizes/physics/1956/summary/. Accessed 04 Oct 2023
Wilhelm, F.K., Steinwandt, R., Langenberg, B., Liebermann, P.J., Messinger, A., Schuhmacher, P.K., Misra-Spieldenner, A.: BSI Project Number 283 (2018). https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
Häffner, H., Roos, C., Blatt, R.: Quantum computing with trapped ions. Phys. Rep. 469(4), 155 (2008). https://doi.org/10.1016/j.physrep.2008.09.003
Monroe, C., Kim, J.: Scaling the ion trap quantum processor. Science 339(6124), 1164 (2013). https://doi.org/10.1126/science.1231298
Brandl, M.F.: A Quantum von Neumann Architecture for Large-Scale Quantum Computing. Preprint (2017). https://doi.org/10.48550/arXiv.1702.02583
Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453(7198), 1031 (2008). https://doi.org/10.1038/nature07128
Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133 (1998). https://doi.org/10.1038/30156
Heinzel, T.: Mesoscopic Electronics in Solid State Nanostructures. Physics Textbook, 2nd edn. Wiley, Hoboken (2007)
Hayashi, T., Fujisawa, T., Cheong, H.D., Jeong, Y.H., Hirayama, Y.: Coherent manipulation of electronic states in a double quantum dot. Phys. Rev. Lett. 91, 226804 (2003). https://doi.org/10.1103/PhysRevLett.91.226804
Acín, A., Bloch, I., Buhrman, H., Calarco, T., Eichler, C., Eisert, J., Esteve, D., Gisin, N., Glaser, S.J., Jelezko, F., Kuhr, S., Lewenstein, M., Riedel, M.F., Schmidt, P.O., Thew, R., Wallraff, A., Walmsley, I., Wilhelm, F.K.: The quantum technologies roadmap: a European community view. New J. Phys. 20(8), 080201 (2018). https://doi.org/10.1088/1367-2630/aad1ea
Josephson, B.D.: Possible new effects in superconductive tunnelling. Phys. Lett. 1(7), 251 (1962). https://doi.org/10.1016/0031-9163(62)91369-0
Bladh, K., Duty, T., Gunnarsson, D., Delsing, P.: The single Cooper-pair box as a charge qubit. New J. Phys. 7(1), 180 (2005). https://doi.org/10.1088/1367-2630/7/1/180
Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, D., Devoret, M.H.: Manipulating the quantum state of an electrical circuit. Science 296(5569), 886 (2002). https://doi.org/10.1126/science.1069372
Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007). https://doi.org/10.1103/PhysRevA.76.042319
Mooij, J., Orlando, T., Levitov, L., Tian, L.,Van der Wal, C.H., Lloyd, S.: Josephson persistent-current qubit. Science 285(5430), 1036 (1999). https://doi.org/10.1126/science.285.5430.1036
Van Der Wal, C.H., Ter Haar, A., Wilhelm, F., Schouten, R., Harmans, C., Orlando, T., Lloyd, S., Mooij, J.: Quantum superposition of macroscopic persistent-current states. Science 290(5492), 773 (2000). https://doi.org/10.1126/science.290.5492.773
Pop, I.M., Geerlings, K., Catelani, G., Schoelkopf, R.J., Glazman, L.I., Devoret, M.H.: Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles. Nature 508(7496), 369 (2014). https://doi.org/10.1038/nature13017
Houck, A.A., Koch, J., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Life after charge noise: recent results with transmon qubits. Quant. Inf. Process. 8(2), 105 (2009). https://doi.org/10.1007/s11128-009-0100-6
Clarke, J., Braginski, A.: The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems, vol. 1. Wiley, Hoboken (2004). https://doi.org/10.1002/3527603646
Lobe, E.: Combinatorial problems in programming quantum annealers. Ph.D. Thesis, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg (2022). https://doi.org/10.25673/89443
Motzoi, F., Gambetta, J.M., Rebentrost, P., Wilhelm, F.K.: Simple pulses for elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett. 103, 110501 (2009). https://doi.org/10.1103/PhysRevLett.103.110501
Paul, W., Steinwedel, H.: Notizen: Ein neues Massenspektrometer ohne Magnetfeld. Zeitschrift für Naturforschung A 8(7), 448 (1953). https://doi.org/10.1515/zna-1953-0710
Paul, W.: Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531 (1990). https://doi.org/10.1103/RevModPhys.62.531
Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417(6890), 709 (2002). https://doi.org/10.1038/nature00784
Monroe, C., Raussendorf, R., Ruthven, A., Brown, K.R., Maunz, P., Duan, L.M., Kim, J.: Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014). https://doi.org/10.1103/PhysRevA.89.022317
Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger, W.K.: Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3(2), e1601540 (2017). https://doi.org/10.1126/sciadv.1601540
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195 (2017). https://doi.org/10.1038/nature23474
Saggio, V., Asenbeck, B.E., Hamann, A., Strömberg, T., Schiansky, P., Dunjko, V., Friis, N., Harris, N.C., Hochberg, M., Englund, D., Wölk, S., Briegel, H.J., Walther, P.: Experimental quantum speed-up in reinforcement learning agents. Nature 591(7849), 229 (2021). https://doi.org/10.1038/s41586-021-03242-7
Feynman, R.P., et al.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (2018)
Fauseweh, B., Schering, P., Hüdepohl, J., Uhrig, G.S.: Efficient algorithms for the dynamics of large and infinite classical central spin models. Phys. Rev. B 96, 054415 (2017). https://doi.org/10.1103/PhysRevB.96.054415
Paeckel, S., Fauseweh, B., Osterkorn, A., Köhler, T., Manske, D., Manmana, S.R.: Detecting superconductivity out of equilibrium. Phys. Rev. B 101, 180507 (2020). https://doi.org/10.1103/PhysRevB.101.180507
Schwarz, L., Fauseweh, B., Tsuji, N., Cheng, N., Bittner, N., Krull, H., Berciu, M., Uhrig, G.S., Schnyder, A.P., Kaiser, S., Manske, D.: Classification and characterization of nonequilibrium Higgs modes in unconventional superconductors. Nat. Commun. 11(1), 287 (2020). https://doi.org/10.1038/s41467-019-13763-5
Fauseweh, B., Zhu, J.X.: Laser pulse driven control of charge and spin order in the two-dimensional Kondo lattice. Phys. Rev. B 102, 165128 (2020). https://doi.org/10.1103/PhysRevB.102.165128
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.H., Zhou, X.Q., Love, P.J., Aspuru-Guzik, A., O’Brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 4213 (2014). https://doi.org/10.1038/ncomms5213
Fauseweh, B., Zhu, J.X.: Quantum computing Floquet energy spectra. Quantum 7, 1063 (2023). https://doi.org/10.22331/q-2023-07-20-1063
Fauseweh, B., Zhu, J.X.: Digital quantum simulation of non-equilibrium quantum many-body systems. Quant. Inf. Process. 20(4), 138 (2021). https://doi.org/10.1007/s11128-021-03079-z
Stollenwerk, T., O’Gorman, B., Venturelli, D., Mandra, S., Rodionova, O., Ng, H., Sridhar, B., Rieffel, E.G., Biswas, R.: Quantum annealing applied to de-conflicting optimal trajectories for air traffic management. IEEE Trans. Intell. Transport. Syst. 21(1), 285 (2019). https://doi.org/10.1109/TITS.2019.2891235
Stollenwerk, T., Lobe, E., Jung, M.: International Workshop on Quantum Technology and Optimization Problems, pp. 99–110. Springer, Berrlin (2019). https://doi.org/10.1007/978-3-030-14082-3_9
Stollenwerk, T., Michaud, V., Lobe, E., Picard, M., Basermann, A., Botter, T.: Agile earth observation satellite scheduling with a quantum annealer. IEEE Trans. Aerosp. Electr. Syst. 57(5), 3520 (2021). https://doi.org/10.1109/TAES.2021.3088490
Misra-Spieldenner, A., Bode, T., Schuhmacher, P.K., Stollenwerk, T., Bagrets, D., Wilhelm, F.K.: Mean-field approximate optimization algorithm. PRX Quantum 4, 030335 (2023). https://doi.org/10.1103/PRXQuantum.4.030335
Jordan, S.: Quantum Algorithm Zoo. https://quantumalgorithmzoo.org/. Accessed 04 Oct 2023
Montanaro, A.: Quantum algorithms: an overview. npj Quant. Inf. 2, 15023 (2016). https://doi.org/10.1038/npjqi.2015.23
Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 439(1907), 553 (1992). https://doi.org/10.1098/rspa.1992.0167
Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411 (1997). https://doi.org/10.1137/S0097539796300921
Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474 (1997). https://doi.org/10.1137/S0097539796298637
Tilly, J., Chen, H., Cao, S., Picozzi, D., Setia, K., Li, Y., Grant, E., Wossnig, L., Rungger, I., Booth, G.H., Tennyson, J.: The variational quantum eigensolver: A review of methods and best practices. Phys. Rep. 986, 1 (2022). https://doi.org/10.1016/j.physrep.2022.08.003. The Variational Quantum Eigensolver: a review of methods and best practices
Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii, K., McClean, J.R., Mitarai, K., Yuan, X., Cincio, L., Coles, P.J.: Variational quantum algorithms. Nat. Rev. Phys. 3(9), 625 (2021). https://doi.org/10.1038/s42254-021-00348-9
McArdle, S., Jones, T., Endo, S., Li, Y., Benjamin, S.C., Yuan, X.: Variational ansatz-based quantum simulation of imaginary time evolution. npj Quant. Inf. 5, 75 (2019). https://doi.org/10.1038/s41534-019-0187-2
Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. Preprint (2014). https://doi.org/10.48550/arXiv.1411.4028
Serrano, M.A., Perez-Castillo, R., Piattini, M.: Quantum Software Engineering. Springer Nature, Cham (2022). https://doi.org/10.1007/978-3-031-05324-5
Spoletini, P.: Towards quantum requirements engineering. In: 2023 IEEE 31st International Requirements Engineering Conference Workshops (REW), pp. 371–374. IEEE, Piscataway (2023). https://doi.org/10.1109/REW57809.2023.00072
Yue, T., Ali, S., Arcaini, P.: Towards quantum software requirements engineering. Preprint (2023). https://doi.org/10.48550/arXiv.2309.13358
ELEVATE (Enhanced probLEm solVing with quAntum compuTErs). https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-18455/29433_read-77059/. Accessed 04 Oct 2023
DLR Quantum Computing Initiative – We shape the quantum computing ecosystem. https://qci.dlr.de/en/. Accessed 04 Oct 2023
Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414(6866), 883 (2001). https://doi.org/10.1038/414883a
Amico, M., Saleem, Z.H., Kumph, M.: Experimental study of Shor’s factoring algorithm using the IBM Q experience. Phys. Rev. A 100, 012305 (2019). https://doi.org/10.1103/PhysRevA.100.012305
Skosana, U., Tame, M.: Demonstration of Shor’s factoring algorithm for \(N=21\) on IBM quantum processors. Sci. Rep. 11(1), 16599 (2021). https://doi.org/10.1038/s41598-021-95973-w
Zhang, X.M., Li, T., Yuan, X.: Quantum state preparation with optimal circuit depth: Implementations and applications. Phys. Rev. Lett. 129, 230504 (2022). https://doi.org/10.1103/PhysRevLett.129.230504
Cirac, J.I., Blatt, R., Parkins, A.S., Zoller, P.: Preparation of Fock states by observation of quantum jumps in an ion trap. Phys. Rev. Lett. 70, 762 (1993). https://doi.org/10.1103/PhysRevLett.70.762
Wunderlich, H., Wunderlich, C., Singer, K., Schmidt-Kaler, F.: Two-dimensional cluster-state preparation with linear ion traps. Phys. Rev. A 79, 052324 (2009). https://doi.org/10.1103/PhysRevA.79.052324
Berwald, J., Chancellor, N., Dridi, R.: Understanding domain-wall encoding theoretically and experimentally. Philosoph. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 381(2241), 20210410 (2023). https://doi.org/10.1098/rsta.2021.0410
Chancellor, N.: Domain wall encoding of discrete variables for quantum annealing and QAOA. Quant. Sci. Technol. 4(4), 045004 (2019). https://doi.org/10.1088/2058-9565/ab33c2
Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., Killoran, N.: Quantum embeddings for machine learning. Preprint (2020). https://doi.org/10.48550/arXiv.2001.03622
Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly language. Preprint (2017). https://doi.org/10.48550/arXiv.1707.03429
Cirq developers. Cirq (2023). https://doi.org/10.5281/zenodo.8161252. Full list of authors: http://github.com/quantumlib/Cirq/graphs/contributors
Qiskit contributors. Qiskit: An open-source framework for quantum computing (2023). https://doi.org/10.5281/zenodo.2573505. https://qiskit.org/
Svore, K., Geller, A., Troyer, M., Azariah, J., Granade, C., Heim, B., Kliuchnikov, V., Mykhailova, M., Paz, A., Roetteler, M.: Q#: Enabling scalable quantum computing and development with a high-level DSL. In: Proceedings of the Real World Domain Specific Languages Workshop 2018, RWDSL2018. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3183895.3183901
Bichsel, B., Baader, M., Gehr, T., Vechev, M.: Silq: a high-level quantum language with safe uncomputation and intuitive semantics. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2020, pp. 286–300. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3385412.3386007
Foundation, E.: Qrisp (2023). https://www.qrisp.eu/. Accessed 21 Nov 2023
QIR Alliance: QIR Specification (2021). https://github.com/qir-alliance/qir-spec. Accessed 04 Oct 2023
Peduri, A., Bhat, S., Grosser, T.: QSSA: an SSA-based IR for quantum computing. In: Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction, CC 2022, pp. 2–14. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3497776.3517772
Pérez-Castillo, R., Piattini, M.: Design of classical-quantum systems with UML. Computing 104(11), 2375 (2022). https://doi.org/10.1007/s00607-022-01091-4
Usaola, M.P.: In: Short Papers Proceedings of the 1st International Workshop on the QuANtum SoftWare Engineering & Programming, Talavera de la Reina, Spain, February 11–12, 2020, CEUR Workshop Proceedings. Piattini, M., Peterssen, G., Pérez-Castillo, R., Hevia, J.L., Serrano, M.A. (eds.) CEUR-WS.org, vol. 2561, pp. 57–63 (2020). https://ceur-ws.org/Vol-2561/paper6.pdf
García de la Barrera, A., García-Rodríguez de Guzmán, I., Polo, M., Piattini, M.: Quantum software testing: State of the art. J. Softw. Evolut. Process 35(4), e2419 (2023). https://doi.org/10.1002/smr.2419
Miranskyy, A., Zhang, L., Doliskani, J.: On Testing and Debugging Quantum Software. Preprint (2021). https://doi.org/10.48550/arXiv.2103.09172
Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802 (1982). https://doi.org/10.1038/299802a0
Li, G., Zhou, L., Yu, N., Ding, Y., Ying, M., Xie, Y.: Proq: Projection-based Runtime Assertions for Debugging on a Quantum Computer. Preprint (2020). https://doi.org/10.48550/arXiv.1911.12855
Liu, J., Byrd, G.T., Zhou, H.: Quantum Circuits for Dynamic Runtime Assertions in Quantum Computation. In: Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’20, pp. 1017–1030. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3373376.3378488
Campos, J., Souto, A.: QBugs: A Collection of Reproducible Bugs in Quantum Algorithms and a Supporting Infrastructure to Enable Controlled Quantum Software Testing and Debugging Experiments. Preprint (2021). https://doi.org/10.48550/arXiv.2103.16968
Zhao, P., Zhao, J., Miao, Z., Lan, S.: Bugs4Q: A Benchmark of Real Bugs for Quantum Programs. Preprint (2021). https://doi.org/10.48550/arXiv.2108.09744
Honarvar, S., Mousavi, M.R., Nagarajan, R.: Property-based Testing of Quantum Programs in Q#. In: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops, ICSEW’20, pp. 430–435. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3387940.3391459
Gottesman, D.: Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127 (1998). https://doi.org/10.1103/PhysRevA.57.127
Preskill, J.: Lecture Notes for Physics 229: Quantum Information and Computation. California Institution of Technology, Pasadena (1998)
Herr, D., Nori, F., Devitt, S.J.: Optimization of lattice surgery is NP-hard. npj Quant. Inf. 3(1), 35 (2017). https://doi.org/10.1038/s41534-017-0035-1
Botea, A., Kishimoto, A., Marinescu, R.: In: Proceedings of the Eleventh International Symposium on Combinatorial Search (SoCS2018), vol. 9, pp. 138–142 (2018). https://doi.org/10.1609/socs.v9i1.18463
Amy, M., Azimzadeh, P., Mosca, M.: On the controlled-NOT complexity of controlled-NOT-phase circuits. Quant. Sci. Technol. 4(1), 015002 (2018). https://doi.org/10.1088/2058-9565/aad8ca
Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput.-Aided Design Integr. Circ. Syst. 32(6), 818 (2013). https://doi.org/10.1109/TCAD.2013.2244643
Schneider, S., Burgholzer, L., Wille, R.: In: Proceedings of the 28th Asia and South Pacific Design Automation Conference, ASPDAC ’23, pp. 190–195 . Association for Computing Machinery, New York (2023). https://doi.org/10.1145/3566097.3567929
Nam, Y., Ross, N.J., Su, Y., Childs, A.M., Maslov, D.: Automated optimization of large quantum circuits with continuous parameters. npj Quant. Inf. 4(1), 23 (2018). https://doi.org/10.1038/s41534-018-0072-4
Kharkov, Y., Ivanova, A., Mikhantiev, E., Kotelnikov, A.: Arline Benchmarks: Automated Benchmarking Platform for Quantum Compilers. Preprint (2022). https://doi.org/10.48550/arXiv.2202.14025
Khalate, P., Wu, X.C., Premaratne, S., Hogaboam, J., Holmes, A., Schmitz, A., Guerreschi, G.G. , Zou, X., Matsuura, A.Y.: An LLVM-based C++ Compiler Toolchain for Variational Hybrid Quantum-Classical Algorithms and Quantum Accelerators. Preprint (2022). https://doi.org/10.48550/arXiv.2202.11142
Epping, M.: Hybrid simplification rules for boundaries of quantum circuits. Preprint (2022). https://doi.org/10.48550/arXiv.2206.03036
NVIDIA, Vingelmann, P., Fitzek, F.H.: CUDA (2020). https://developer.nvidia.com/cuda-toolkit
Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van den Nest, M.: Measurement-based quantum computation. Nat. Phys. 5(1), 19 (2009). https://doi.org/10.1038/nphys1157
Lippert, T., Michielsen, K.: In: NIC Symposium 2022: Proceedings, Publication Series of the John von Neumann Institute for Computing (NIC) NIC Series, vol. 51, pp. 3 – 23. NIC Symposium 2022, Jülich, Germany, 29 Sep 2022–30 Sep 2022. Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag, Jülich (2022). https://juser.fz-juelich.de/record/917067
HPCQC. Where quantum accelerates the future of supercomputing. https://www.hpcqc.org/. Accessed 04 Oct 2023
Janzing, D., Wocjan, P., Beth, T.: Identity check is QMA-complete. Preprint (2003). https://doi.org/10.48550/arXiv.quant-ph/0305050
Viamontes, G.F., Markov, I.L., Hayes, J.P.: In: 2007 IEEE/ACM International Conference on Computer-Aided Design, pp. 69–74 (2007). https://doi.org/10.1109/ICCAD.2007.4397246
Burgholzer, L., Wille, R.: In: 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), IEEE, pp. 127–132. IEEE Press, Piscataway (2020). https://doi.org/10.1109/ASP-DAC47756.2020.9045153
Burgholzer, L., Wille, R.: QCEC: A JKQ tool for quantum circuit equivalence checking. Softw. Impacts 7, 100051 (2021). https://doi.org/10.1016/j.simpa.2020.100051. https://www.sciencedirect.com/science/article/pii/S2665963820300427
D-Wave. Ocean. https://github.com/dwavesystems/dwave-ocean-sdk
DLR-SC. quark (2023). https://gitlab.com/quantum-computing-software/quark
Lobe, E., Lutz, A.: Minor Embedding in Broken Chimera and Derived Graphs is NP-complete. In: Theoretical Computer Science 989 (2024). https://doi.org/10.1016/j.tcs.2023.114369
Cai, J., W.G. Macready, Roy, A.: A practical heuristic for finding graph minors. Preprint (2014). https://doi.org/10.48550/arXiv.1406.2741
Lobe, E., Schürmann, L., Stollenwerk, T.: Embedding of complete graphs in broken Chimera graphs. Quant. Inf. Process. 20(7), 1 (2021). https://doi.org/10.1007/s11128-021-03168-z
Lobe, E., Kaibel, V.: Optimal sufficient requirements on the embedded Ising problem in polynomial time. Quant. Inf. Process. 22(305), 1 (2023). https://doi.org/10.1007/s11128-023-04058-2
Lidar, D.A.: Review of Decoherence-Free Subspaces, Noiseless Subsystems, and Dynamical Decoupling, pp. 295–354. Wiley, Hoboken (2014). https://doi.org/10.1002/9781118742631.ch11
Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733 (1998). https://doi.org/10.1103/PhysRevA.58.2733
Lidar, D.A., Birgitta Whaley, K.: Decoherence-Free Subspaces and Subsystems, pp. 83–120. Springer, Berlin (2003). https://doi.org/10.1007/3-540-44874-8_5
Mueller, T., Stollenwerk, T., Headley, D., Epping, M., Wilhelm, F.K.: Coherent and non-unitary errors in ZZ-generated gates. Preprint (2023). https://doi.org/10.48550/arXiv.2304.14212
Cai, Z., Babbush, R., Benjamin, S.C., Endo, S., Huggins, W.J., Li, Y., McClean, J.R., O’Brien, T.E.: Quantum Error Mitigation. Preprint (2023). https://doi.org/10.48550/arXiv.2210.00921
Endo, S.: Hybrid quantum-classical algorithms and error mitigation. Ph.D. Thesis, University of Oxford (2019). https://ora.ox.ac.uk/objects/uuid:6733c0f6-1b19-4d12-a899-18946aa5df85
Temme, K., Bravyi, S., Gambetta, J.M.: Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017). https://doi.org/10.1103/PhysRevLett.119.180509
Beisel, M., Barzen, J., Leymann, F., Truger, F., Weder, B., Yussupov, V.: Configurable readout error mitigation in quantum workflows. Electronics 11(19), 2983 (2022). https://doi.org/10.3390/electronics11192983
Gottesman, D.: An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation. Preprint (2009). https://doi.org/10.48550/arXiv.0904.2557
Bacon, D.: Introduction to Quantum Error Correction, Chap. 2, pp. 46–77. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139034807.004
Roffe, J.: Quantum error correction: an introductory guide. Contemp. Phys. 60(3), 226 (2019). https://doi.org/10.1080/00107514.2019.1667078
Mohseni, M., Rezakhani, A.T., Lidar, D.A.: Quantum-process tomography: Resource analysis of different strategies. Phys. Rev. A 77, 032322 (2008). https://doi.org/10.1103/PhysRevA.77.032322
Flammia, S.T., Wallman, J.J.: Efficient estimation of pauli channels. ACM Trans. Quant. Comput. 1(1), 1 (2020). https://doi.org/10.1145/3408039
Wimmer, C., Szangolies, J., Epping, M.: Calibration of Syndrome Measurements in a Single Experiment. Preprint (2023). https://doi.org/10.48550/arXiv.2305.03004
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995). https://doi.org/10.1103/PhysRevA.52.R2493
Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 452(1954), 2551 (1996). https://doi.org/10.1098/rspa.1996.0136
Laflamme, R., Miquel, C., J.P. Paz, Zurek, W.H.: Perfect Quantum Error Correction Code. Preprint (1996). https://doi.org/10.48550/arXiv.quant-ph/9602019
Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996). https://doi.org/10.1103/PhysRevA.54.3824
Kitaev, A.Y.: Quantum computations: algorithms and error correction. Russ. Math. Surv. 52(6), 1191 (1997). https://doi.org/10.1070/RM1997v052n06ABEH002155
Shor, P.: In: Proceedings of 37th Conference on Foundations of Computer Science, pp. 56–65 (1996). https://doi.org/10.1109/SFCS.1996.548464
Gheorghiu, A., Kapourniotis, T., Kashefi, E.: Verification of quantum computation: an overview of existing approaches. Theory Comput. Syst, 63(4), 715 (2019). https://doi.org/10.1007/s00224-018-9872-3
Wang, S.A., Lu, C.Y., Tsai, I.M., Kuo, S.Y.: An XQDD-based verification method for quantum circuits. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E91-A(2), 584–594 (2008). https://doi.org/10.1093/ietfec/e91-a.2.584
D’Ariano, G.M., Paris, M.G.A., Sacchi, M.F.: Quantum Tomography. Preprint (2003). https://doi.org/10.48550/arXiv.quant-ph/0302028
D’Ariano, G.M., Maccone, L., Presti, P.L.: Quantum calibration of measurement instrumentation. Phys. Rev. Lett. 93, 250407 (2004). https://doi.org/10.1103/PhysRevLett.93.250407
Artiles, L.M., Gill, R.D., Gută, M.I.: An invitation to quantum tomography. J. Roy. Stat. Soc. Ser. B (Statist. Methodol.) 67(1), 109 (2005). https://doi.org/10.1111/j.1467-9868.2005.00491.x
Gaebler, J.P., Meier, A.M., Tan, T.R., Bowler, R., Lin, Y., Hanneke, D., Jost, J.D., Home, J.P., Knill, E., Leibfried, D., Wineland, D.J.: Randomized benchmarking of multiqubit gates. Phys. Rev. Lett. 108, 260503 (2012). https://doi.org/10.1103/PhysRevLett.108.260503
SPEC (Standard Performance Evaluation Corporation). SPEC benchmark and tools. https://spec.org/benchmarks.html. Accessed 04 Oct 2023
Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK Benchmark: past, present and future. Concurr. Comput. Pract. Exper. 15(9), 803 (2003). https://doi.org/10.1002/cpe.728
Tomesh, T., Gokhale, P., Omole, V., Ravi, G.S., Smith, K.N., Viszlai, J., Wu, X.C., Hardavellas, N., Martonosi, M.R., Chong, F.T.: SupermarQ: A scalable quantum benchmark suite. Preprint (2022). https://doi.org/10.48550/arXiv.2202.11045
Dallaire-Demers, P.L., Stechly, M., Gonthier, J.F., Bashige, N.T., Romero, J., Cao, Y.: An application benchmark for fermionic quantum simulations. Preprint (2020). https://doi.org/10.48550/arXiv.2003.01862
Röhrig-Zöllner, M., Thies, J., Basermann, A.: Performance of the low-rank TT-SVD for large dense tensors on modern MultiCore CPUs. SIAM J. Sci. Comput. 44(4), C287 (2022). https://doi.org/10.1137/21m1395545
Damm, W., Möhlmann, E., Peikenkamp, T., Rakow, A.: LNCS, pp. 182–205. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-95246-8_11
Kröger, Scheidegger, Becker, Deublein, Fehlberg, Galassi, Hohl, Koester, Zanella: Autonomes fahren. ein treiber zukünftiger mobilität (2022). https://doi.org/10.5281/ZENODO.5907154
de Moura, L., Bjørner, N.: TACAS, pp. 337–340. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-78800-3_24
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: In: Proceedings of the 1st Annual Conference on Robot Learning, Proceedings of Machine Learning Research. Levine, S., Vanhoucke, V., Goldberg, K. (Eds.) , vol. 78, pp. 1–16. PMLR (2017). https://proceedings.mlr.press/v78/dosovitskiy17a.html
Apache Software Foundation, Cloudera, Hortonworks. Apache Nifi. https://nifi.apache.org/. Accessed 04 Oct 2023
Boden, B., Flink, J., Först, N., Mischke, R., Schaffert, K., Weinert, A., Wohlan, A., Schreiber, A.: RCE: An integration environment for engineering and science. SoftwareX 15, 100759 (2021). https://doi.org/10.1016/j.softx.2021.100759
Texas Instruments. Laboratory Virtual Instrument Engineering Workbench (LabVIEW). https://www.ni.com/labview. Accessed 04 Oct 2023
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Copyright information
© 2024 The Author(s)
About this chapter
Cite this chapter
Basermann, A. et al. (2024). Quantum Software Ecosystem Design. In: Exman, I., Pérez-Castillo, R., Piattini, M., Felderer, M. (eds) Quantum Software. Springer, Cham. https://doi.org/10.1007/978-3-031-64136-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-64136-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-64135-0
Online ISBN: 978-3-031-64136-7
eBook Packages: Computer ScienceComputer Science (R0)