Skip to main content

Anticipating Student Abandonment and Failure: Predictive Models in High School Settings

  • Conference paper
  • First Online:
Artificial Intelligence in Education (AIED 2024)

Abstract

Addressing the issue of high school non-completion poses a crucial challenge for contemporary education. This research introduces a machine learning-based methodology to identify students at risk of failure and abandonment in a specific Brazilian state, aiming to establish an early warning system utilizing academic, socioeconomic, and performance indicators for proactive interventions. The methodology followed here ensures the explainability of predictions and guards against bias in relation to certain features. The analysis of data from 79,165 students resulted in the creation of six accurate classification models, with accuracy rates ranging from 69.4% to 92.7%. This underscores the methodology’s effectiveness in identifying at-risk students, highlighting its potential to alleviate failure and abandonment. The implementation of this methodology could positively influence proactive educational policies and enhance educational metrics within the state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amparo, D.M.d., Galvão, A.C.T., Cardenas, C., Koller, S.H.: A escola e as perspectivas educacionais de jovens em situação de risco. Psicologia Escolar e Educacional 12(1), 69-88 (2008). https://doi.org/10.1590/S1413-85572008000100006

  2. Attaran, M., Attaran, S.: Opportunities and challenges of implementing predictive analytics for competitive advantage. In: Applying Business Intelligence Initiatives in Healthcare and Organizational Settings, pp. 64–90 (2019)

    Google Scholar 

  3. Cechinel, C., et al.: Mapping learning analytics initiatives in Latin America. Br. J. Educ. Technol. 51(4), 892–914 (2020)

    Article  Google Scholar 

  4. Chatti, M.A., Dyckhoff, A.L., Schroeder, U., Thüs, H.: A reference model for learning analytics. Int. J. Technol. Enhanced Learn. 4(5–6), 318–331 (2013)

    Google Scholar 

  5. Chung, J.Y., Lee, S.: Dropout early warning systems for high school students using machine learning. Child Youth Serv. Rev. 96, 346–353 (2019)

    Article  Google Scholar 

  6. Clow, D.: The learning analytics cycle: closing the loop effectively (2012)

    Google Scholar 

  7. Deho, O.B., Zhan, C., Li, J., Liu, J., Liu, L., Le Duy, T.: How do the existing fairness metrics and unfairness mitigation algorithms contribute to ethical learning analytics? Br. J. Edu. Technol. 53(4), 822–843 (2022)

    Article  Google Scholar 

  8. Elistia, E., Syahzuni, B.A.: The correlation of the human development index (HDI) towards economic growth (GDP per capita) in 10 Asean member countries. JHSS (J. Hum. Soc. Stud.) 2(2), 40–46 (2018)

    Article  Google Scholar 

  9. Esbenshade, L., Vitale, J., Baker, R.S.: Non-overlapping leave future out validation (nolfo): Implications for graduation prediction. prePrint . https://doi.org/10.35542/osf.io/tx8cy

  10. Ferguson, R.: Learning analytics: drivers, developments and challenges. Int. J. Technol. Enhanced Learn. 4(5/6), 304–317 (2012)

    Article  Google Scholar 

  11. Ferguson, R., et al.: Research evidence on the use of learning analytics: implications for education policy (2016)

    Google Scholar 

  12. Ferreira, S.G., Ribeiro, G., Tafner, P.: School abandonment and dropout in Brazil. Technical report, Rio de Janeiro, Brazil (2022)

    Google Scholar 

  13. Gómez-Pulido, J.A., Park, Y., Soto, R.: Advanced techniques in the analysis and prediction of students’ behaviour in technology-enhanced learning contexts (2020)

    Google Scholar 

  14. Hernández-Leal, E., Duque-Méndez, N.D., Cechinel, C.: Unveiling educational patterns at a regional level in Colombia: data from elementary and public high school institutions. Heliyon 7(9), e08017 (2021)

    Article  Google Scholar 

  15. Herodotou, C., Rienties, B., Boroowa, A., Zdrahal, Z., Hlosta, M., Naydenova, G.: Implementing predictive learning analytics on a large scale: the teacher’s perspective. In: Proceedings of the Seventh International Learning Analytics & Knowledge Conference, pp. 267–271 (2017)

    Google Scholar 

  16. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (INEP): Censo Escolar 2021 (2022). https://qedu.org.br/uf/32-espirito-santo. Accessed 1 Jan 2024

  17. Krüger, J.G.C., de Souza Britto Jr., A., Barddal, J.P.: An explainable machine learning approach for student dropout prediction. Expert Syst. Appl. 233, 120933 (2023)

    Google Scholar 

  18. Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Rese. 18(17), 1–5 (2017). http://jmlr.org/papers/v18/16-365.html

  19. Lorenzon, L.N.: Análise comparada entre regulamentações de dados pessoais no brasil e na união europeia (lgpd e gdpr) e seus respectivos instrumentos de enforcement. Revista do Programa de Direito da União Europeia 1, 39–52 (2021)

    Google Scholar 

  20. Márquez-Vera, C., Cano, A., Romero, C., Noaman, A.Y.M., Mousa Fardoun, H., Ventura, S.: Early dropout prediction using data mining: a case study with high school students. Expert Syst. 33(1), 107–124 (2016)

    Google Scholar 

  21. Moissa, B., Gasparini, I., Kemczinski, A.: A systematic mapping on the learning analytics field and its analysis in the massive open online courses context. Int. J. Distance Educ. Technol. (IJDET) 13(3), 1–24 (2015)

    Article  Google Scholar 

  22. OECD: Benchmarking Higher Education System Performance. OECD Publishing, Paris, France (2019). https://doi.org/10.1787/be5514d7-en

  23. Parr, A.K., Bonitz, V.S.: Role of family background, student behaviors, and school-related beliefs in predicting high school dropout. J. Educ. Res. 108(6), 504–514 (2015)

    Article  Google Scholar 

  24. Queiroga, E.M., et al.: Experimenting learning analytics and educational data mining in different educational contexts and levels. In: 2022 XVII Latin American Conference on Learning Technologies (LACLO), pp. 1–9. IEEE (2022)

    Google Scholar 

  25. Queiroga, E.M., Batista Machado, M.F., Paragarino, V.R., Primo, T.T., Cechinel, C.: Early prediction of at-risk students in secondary education: A countrywide k-12 learning analytics initiative in Uruguay. Information 13(9), 401 (2022)

    Article  Google Scholar 

  26. Stanek, C.: The educational system of Brazil. IEM Spotlight 10(1), 1–6 (2013)

    Google Scholar 

  27. Wirth, R., Hipp, J.: Crisp-dm: Towards a standard process model for data mining. In: Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining, vol. 1, pp. 29–39. Springer, London (2000)

    Google Scholar 

  28. Yakunina, R., Bychkov, G.: Correlation analysis of the components of the human development index across countries. Procedia Econ. Finan. 24, 766–771 (2015)

    Article  Google Scholar 

  29. Yau, J.Y.K., Ifenthaler, D.: Reflections on different learning analytics indicators for supporting study success. Int. J. Learn. Anal. Artif. Intell. Educ.: IJAI 2(2), 4–23 (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Inter American Development Bank and Unibanco Institute. Cristian Cechinel was partially supported by the Brazilian National Council for Scientific and Technological Development (CNPq) (grants 305731/2021-1 and 409633/2022-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Marques Queiroga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Queiroga, E.M. et al. (2024). Anticipating Student Abandonment and Failure: Predictive Models in High School Settings. In: Olney, A.M., Chounta, IA., Liu, Z., Santos, O.C., Bittencourt, I.I. (eds) Artificial Intelligence in Education. AIED 2024. Lecture Notes in Computer Science(), vol 14829. Springer, Cham. https://doi.org/10.1007/978-3-031-64302-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64302-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64301-9

  • Online ISBN: 978-3-031-64302-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics