Skip to main content

Learning Families of Algebraic Structures from Text

  • Conference paper
  • First Online:
Twenty Years of Theoretical and Practical Synergies (CiE 2024)

Abstract

We adapt the classical notion of learning from text to computable structure theory. Our main result is a model-theoretic characterization of the learnability from text for classes of structures. We show that a family of structures is learnable from text if and only if the structures can be distinguished in terms of their theories restricted to positive infinitary \(\varSigma _2\) sentences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ash, C.J., Knight, J.F.: Computable Structures and the Hyperarithmetical Hierarchy. Studies in Logic and the Foundations of Mathematics, vol. 144. Elsevier Science B.V. (2000)

    Google Scholar 

  2. Bazhenov, N.A., Ganchev, H., Vatev, S.: Computable embeddings for pairs of linear orders. Algebra Logic 60(3), 163–187 (2021). https://doi.org/10.1007/s10469-021-09639-7

    Article  MathSciNet  Google Scholar 

  3. Bazhenov, N., Cipriani, V., San Mauro, L.: Learning algebraic structures with the help of Borel equivalence relations. Theor. Comput. Sci. 951 (2023). https://doi.org/10.1016/j.tcs.2023.113762

  4. Bazhenov, N., Fokina, E., Rossegger, D., Soskova, A.A., Vatev, S.V.: A Lopez-Escobar theorem for continuous domains (2023). http://arxiv.org/abs/2301.09940

  5. Bazhenov, N., Fokina, E., San Mauro, L.: Learning families of algebraic structures from informant. Inf. Comput. 275, 104590 (2020). https://doi.org/10.1016/j.ic.2020.104590

  6. Bazhenov, N., San Mauro, L.: On the Turing complexity of learning finite families of algebraic structures. J. Log. Comput. 31(7), 1891–1900 (2021). https://doi.org/10.1093/logcom/exab044

    Article  MathSciNet  Google Scholar 

  7. Calvert, W., Cummins, D., Knight, J.F., Miller, S.: Comparing classes of finite structures. Algebra Logic 43(6), 374–392 (2004). https://doi.org/10.1023/B:ALLO.0000048827.30718.2c

    Article  MathSciNet  Google Scholar 

  8. Case, J.: Enumeration reducibility and partial degrees. Ann. Math. Logic 2(4), 419–439 (1971). https://doi.org/10.1016/0003-4843(71)90003-9

    Article  MathSciNet  Google Scholar 

  9. Cooper, S.B.: Enumeration reducibility, nondeterministic computations and relative computability of partial functions. In: Ambos-Spies, K., Müller, G.H., Sacks, G.E. (eds.) Recursion Theory Week. LNM, vol. 1432, pp. 57–110. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0086114

    Chapter  Google Scholar 

  10. Fokina, E., Kötzing, T., San Mauro, L.: Limit learning equivalence structures. In: Garivier, A., Kale, S. (eds.) Proceedings of the 30th International Conference on Algorithmic Learning Theory. Proceedings of Machine Learning Research, vol. 98, pp. 383–403. PMLR (2019)

    Google Scholar 

  11. Gao, Z., Stephan, F., Wu, G., Yamamoto, A.: Learning families of closed sets in matroids. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) WTCS 2012. LNCS, vol. 7160, pp. 120–139. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27654-5_10

    Chapter  Google Scholar 

  12. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967). https://doi.org/10.1016/S0019-9958(67)91165-5

    Article  MathSciNet  Google Scholar 

  13. Harizanov, V.S., Stephan, F.: On the learnability of vector spaces. J. Comput. Syst. Sci. 73(1), 109–122 (2007). https://doi.org/10.1016/j.jcss.2006.09.001

    Article  MathSciNet  Google Scholar 

  14. Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems that Learn. MIT Press, Cambridge (1999)

    Book  Google Scholar 

  15. Knight, J.F., Miller, S., Vanden Boom, M.: Turing computable embeddings. J. Symb. Log. 72(3), 901–918 (2007). https://doi.org/10.2178/jsl/1191333847

    Article  MathSciNet  Google Scholar 

  16. Martin, E., Osherson, D.: Scientific discovery on positive data via belief revision. J. Philos. Log. 29(5), 483–506 (2000). https://doi.org/10.1023/A:1026569206678

    Article  MathSciNet  Google Scholar 

  17. Putnam, H.: Trial and error predicates and the solution to a problem of Mostowski. J. Symb. Log. 30(1), 49–57 (1965). https://doi.org/10.2307/2270581

    Article  MathSciNet  Google Scholar 

  18. Soskov, I.: Degree spectra and co-spectra of structures. Ann. Sofia Univ. 96, 45–68 (2004)

    MathSciNet  Google Scholar 

  19. Stephan, F., Ventsov, Y.: Learning algebraic structures from text. Theor. Comput. Sci. 268(2), 221–273 (2001). https://doi.org/10.1016/S0304-3975(00)00272-3

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Bazhenov was supported by the Russian Science Foundation (project no. 24-11-00227). Fokina was supported by the Austrian Science Fund FWF through the project P 36781. Rossegger was supported by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 101026834—ACOSE. Soskova was supported by the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project no. BG-RRP-2.004-0008-C01. Vatev was supported by FNI-SU 80-10-180/17.05.2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Vatev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bazhenov, N., Fokina, E., Rossegger, D., Soskova, A., Vatev, S. (2024). Learning Families of Algebraic Structures from Text. In: Levy Patey, L., Pimentel, E., Galeotti, L., Manea, F. (eds) Twenty Years of Theoretical and Practical Synergies. CiE 2024. Lecture Notes in Computer Science, vol 14773. Springer, Cham. https://doi.org/10.1007/978-3-031-64309-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64309-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64308-8

  • Online ISBN: 978-3-031-64309-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics