Abstract
We introduce the double differential distribution table (DDDT) and the double differential uniformity of a vectorial Boolean function to study the security of an S-box to differential attacks. We study several properties of the DDDT and the double differential uniformity and present their explicit values for three of the most practical vectorial Boolean functions: the inverse function, the Gold function, and the Bracken-Leander function. The double differential uniformity is an extension of the differential uniformity and the Feistel boomerang uniformity. It can be used as a distinguisher, and a new criterion for the security of an S-box derived from a vectorial Boolean function against differential attacks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aubry, Y., Herbaut, F.: Differential uniformity and second order derivatives for generic polynomials. J. Pure Appl. Algebra 222, 1095–1110 (2017)
Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: DLCT: a new tool for differential-linear cryptanalysis. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 313–342. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_11
Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)
Boukerrou, H., Huynh, P., Lallemand, V., Mandal, B., Minier, M.: On the Feistel counterpart of the boomerang connectivity table: introduction and analysis of the FBCT. IACR Trans. Symmetric Cryptol. 020(1), 331–362 (2020)
Carlet, C.: Characterizations of the differential uniformity of vectorial functions by the Walsh transform. IEEE Trans. Inf. Theory 64(9), 6443–6453 (2018)
Coulter, S., Henderson, M.: A note on the roots of trinomials over a finite field. Bull. Austral. Math. Soc. 69, 429–432 (2004)
Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4
Eddahmani, S., Mesnager, S.: Explicit values of the DDT, the BCT, the FBCT, and the FBDT of the inverse, the gold, and the Bracken-Leander S-boxes. Cryptogr. Commun. 14, 1301–1344 (2022)
Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1986)
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33
National Institute of Standards and Technology: Federal Information Processing Standards Publication 197: Announcing the Advanced Encryption Standard (AES). http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_6
Pommerening, K.: Quadratic equations in finite fields of characteristic 2, February 2012. http://www.staff.uni-mainz.de/pommeren/MathMisc/QuGlChar2.pdf
Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48519-8_12
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Eddahmani, S., Mesnager, S. (2024). On the Double Differential Uniformity of Vectorial Boolean Functions. In: Vaudenay, S., Petit, C. (eds) Progress in Cryptology - AFRICACRYPT 2024. AFRICACRYPT 2024. Lecture Notes in Computer Science, vol 14861. Springer, Cham. https://doi.org/10.1007/978-3-031-64381-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-64381-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-64380-4
Online ISBN: 978-3-031-64381-1
eBook Packages: Computer ScienceComputer Science (R0)