Skip to main content

On the Double Differential Uniformity of Vectorial Boolean Functions

  • Conference paper
  • First Online:
Progress in Cryptology - AFRICACRYPT 2024 (AFRICACRYPT 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14861))

Included in the following conference series:

Abstract

We introduce the double differential distribution table (DDDT) and the double differential uniformity of a vectorial Boolean function to study the security of an S-box to differential attacks. We study several properties of the DDDT and the double differential uniformity and present their explicit values for three of the most practical vectorial Boolean functions: the inverse function, the Gold function, and the Bracken-Leander function. The double differential uniformity is an extension of the differential uniformity and the Feistel boomerang uniformity. It can be used as a distinguisher, and a new criterion for the security of an S-box derived from a vectorial Boolean function against differential attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubry, Y., Herbaut, F.: Differential uniformity and second order derivatives for generic polynomials. J. Pure Appl. Algebra 222, 1095–1110 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: DLCT: a new tool for differential-linear cryptanalysis. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 313–342. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_11

    Chapter  Google Scholar 

  3. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)

    Article  MathSciNet  Google Scholar 

  4. Boukerrou, H., Huynh, P., Lallemand, V., Mandal, B., Minier, M.: On the Feistel counterpart of the boomerang connectivity table: introduction and analysis of the FBCT. IACR Trans. Symmetric Cryptol. 020(1), 331–362 (2020)

    Article  Google Scholar 

  5. Carlet, C.: Characterizations of the differential uniformity of vectorial functions by the Walsh transform. IEEE Trans. Inf. Theory 64(9), 6443–6453 (2018)

    Article  MathSciNet  Google Scholar 

  6. Coulter, S., Henderson, M.: A note on the roots of trinomials over a finite field. Bull. Austral. Math. Soc. 69, 429–432 (2004)

    Article  MathSciNet  Google Scholar 

  7. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4

    Book  Google Scholar 

  8. Eddahmani, S., Mesnager, S.: Explicit values of the DDT, the BCT, the FBCT, and the FBDT of the inverse, the gold, and the Bracken-Leander S-boxes. Cryptogr. Commun. 14, 1301–1344 (2022)

    Article  MathSciNet  Google Scholar 

  9. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  10. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33

    Chapter  Google Scholar 

  11. National Institute of Standards and Technology: Federal Information Processing Standards Publication 197: Announcing the Advanced Encryption Standard (AES). http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

  12. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_6

    Chapter  Google Scholar 

  13. Pommerening, K.: Quadratic equations in finite fields of characteristic 2, February 2012. http://www.staff.uni-mainz.de/pommeren/MathMisc/QuGlChar2.pdf

  14. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48519-8_12

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Eddahmani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eddahmani, S., Mesnager, S. (2024). On the Double Differential Uniformity of Vectorial Boolean Functions. In: Vaudenay, S., Petit, C. (eds) Progress in Cryptology - AFRICACRYPT 2024. AFRICACRYPT 2024. Lecture Notes in Computer Science, vol 14861. Springer, Cham. https://doi.org/10.1007/978-3-031-64381-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64381-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64380-4

  • Online ISBN: 978-3-031-64381-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics