Skip to main content

DiTRU: A Resurrection of NTRU over Dihedral Group

  • Conference paper
  • First Online:
Progress in Cryptology - AFRICACRYPT 2024 (AFRICACRYPT 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14861))

Included in the following conference series:

  • 206 Accesses

Abstract

NTRU-like cryptosystems are among the most studied lattice-based post-quantum candidates. While most NTRU proposals have been introduced over a commutative ring of quotient polynomials, other rings can be used. Noncommutative algebra has been endorsed as a direction to build new variants of NTRU a long time ago. The first attempt to construct a noncommutative variant was due to Hoffstein and Silverman motivated by more resistance to lattice attack. The scheme has been built over the group ring of a dihedral group. However, their design differed from standard NTRU and soon was found vulnerable to algebraic attacks. In this work, we revive the group ring NTRU over the dihedral group as an instance of the GR-NTRU framework.

Unlike many proposals of noncommutative variants in the literature, our work focuses on putting the scheme into practice. We clear all the aspects that make our scheme implementable by proposing an efficient inversion algorithm over the new setting of the noncommutative ring, describing the decryption failure model, and analyzing the lattice associated with our instantiation. Finally, we discuss the best-known attacks against our scheme and provide an implementation targeting 128-bit, 192-bit, and 256-bit levels of security as proof of its practicality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Starting from \(N=113\), the results are averaged over at least 20 trials (only) since the time taken by one trial becomes extensively high. For \(N=127\) with DiTRU lattice, we recorded the trials that found the key with \(\beta \le 65\).

  2. 2.

    May [41] proposed an MITM attack on NTRU-type cryptosystems with a complexity \(O(|\mathcal {T}|^{0.3})\)(classic). However, it cannot be combined with hybrid attacks; therefore, we do not use it in our cost estimations.

  3. 3.

    In NTRUPrime, the authors conclude that according to the submission to NIST standardization process, a cryptosystem achieves levels of security corresponding to AES-128, AES-192, and AES-256, if the classical (pre-quantum) Core-SVP model assign at least \(2^{125}, 2^{181}, \) and \(2^{254}\), respectively to the selected parameter sets.

  4. 4.

    Our implementation is based on NTRU submissions to the first and third round of NIST competition with the required modifications to the dihedral group setup.

References

  1. Agrawal, S., Pellet-Mary, A.: Indistinguishability obfuscation without maps: attacks and fixes for noisy linear FE. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 110–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_5

    Chapter  Google Scholar 

  2. Albrecht, M.R., Gheorghiu, V., Postlethwaite, E.W., Schanck, J.M.: Estimating quantum speedups for lattice sieves. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 583–613. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_20

    Chapter  Google Scholar 

  3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key \(\{\)Exchange-A\(\}\) new hope. In: 25th USENIX Security Symposium (USENIX Security 16), pp. 327–343 (2016)

    Google Scholar 

  4. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ algorithms and their precise cost estimation by sharp simulator. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 789–819. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_30

    Chapter  Google Scholar 

  5. Avanzi, R., et al.: CRYSTALS-Kyber algorithm specifications and supporting documentation. NIST PQC Round (2020). https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

  6. Bagheri, K., Sadeghi, M.R., Panario, D.: A non-commutative cryptosystem based on quaternion algebras. Des. Codes Cryptogr. 86 (2018). https://doi.org/10.1007/s10623-017-0451-4

  7. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor searching with applications to lattice sieving. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 10–24. SIAM (2016)

    Google Scholar 

  8. Chen, C., et al.: NTRU: algorithm specifications and supporting documentation. NIST (2020). https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

  9. Chen, C., Hoffstein, J., Whyte, W., Zhang, Z.: NIST PQ submission: ntruencrypt a lattice based encryption algorithm. NIST (2017)

    Google Scholar 

  10. Chen, Y.: Réduction de réseau et sécurité concrete du chiffrement completement homomorphe (Ph. D. thesis) (2013)

    Google Scholar 

  11. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1

    Chapter  Google Scholar 

  12. Coppersmith, D.: Attacking non-commutative NTRU. Technical report, IBM research report, April 1997. Report (2006). https://dominoweb.draco.res.ibm.com/d102d0885e971b558525659300727a26.html

  13. Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_5

    Chapter  Google Scholar 

  14. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3

    Chapter  Google Scholar 

  15. Ducas, L., van Woerden, W.: NTRU fatigue: how stretched is overstretched? In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 3–32. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_1

    Chapter  Google Scholar 

  16. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comput. 44(170), 463–471 (1985)

    Article  MathSciNet  Google Scholar 

  17. Fouque, P.A., et al.: FALCON: fast-fourier lattice-based compact signatures over NTRU. Technical report (2018). https://www.di.ens.fr/~prest/Publications/falcon.pdf

  18. Gentry, C.: Key recovery and message attacks on NTRU-composite. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 182–194. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_12

    Chapter  Google Scholar 

  19. Hirschhorn, P.S., Hoffstein, J., Howgrave-Graham, N., Whyte, W.: Choosing NTRUEncrypt parameters in light of combined lattice reduction and MITM approaches. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 437–455. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9_27

    Chapter  Google Scholar 

  20. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang, Z.: Choosing parameters for NTRUEncrypt. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_1

    Chapter  Google Scholar 

  21. Hoffstein, J., Pipher, J., Silverman, J.: An Introduction to Mathematical Cryptography, 1st edn. Springer Publishing Company, New York (2008). Incorporated. https://doi.org/10.1007/978-0-387-77993-5

  22. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

    Chapter  Google Scholar 

  23. Hoffstein, J., Silverman, J.: A non-commutative version of the NTRU public key cryptosystem. It was for a while available at (1997). http://www.tiac.net/users/ntru/NTRUFTP.html

  24. Hoffstein, J., Silverman, J.H.: A non-commutative version of the NTRU public key cryptosystem. unpublished paper, February 1997

    Google Scholar 

  25. Hoffstein, J., Silverman, J.H., Whyte, W.: Meet-in-the-middle attack on an NTRU private key. Technical report, NTRU Cryptosystems, July 2006. Report (2006)

    Google Scholar 

  26. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–169. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_9

    Chapter  Google Scholar 

  27. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: A meet-in-the-middle attack on an NTRU private key. NTRU cryptosystem Technical report #004. (2003). https://www.securityinnovation.com/uploads/Crypto/NTRUTech004v2.pdf

  28. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing parameter sets for NTRUEncrypt with NAEP and SVES-3. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 118–135. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_10

    Chapter  Google Scholar 

  29. Hurley, T.: Group rings and rings of matrices. Int. J. Pure Appl. Math. 31, 319–335 (2006). https://www.researchgate.net/publication/228928727_Group_rings_and_rings_of_matrices

  30. Jarvis, K., Nevins, M.: ETRU: NTRU over the eisenstein integers. Des. Codes Crypt. 74(1), 219–242 (2015). https://doi.org/10.1007/s10623-013-9850-3

    Article  MathSciNet  Google Scholar 

  31. Karbasi, A.H., Atani, S.E., Atani, R.E.: PairTRU: pairwise Non-commutative Extension of the NTRU public key cryptosystem. Int. J. Inf. Secur. Sci. 8, 1–10 (2018)

    Google Scholar 

  32. Kim, J., Lee, C.: A polynomial time algorithm for breaking NTRU encryption with multiple keys. Des. Codes Cryptogr. 1–11 (2023).https://doi.org/10.1007/s10623-023-01233-5

  33. Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched NTRU parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_1

    Chapter  Google Scholar 

  34. Silverman, J.H., Pipher, J., Hoffstein, J.: An Introduction to Mathematical Cryptography. UTM, Springer, New York (2008). https://doi.org/10.1007/978-0-387-77993-5

    Book  Google Scholar 

  35. Kumar, V., Raya, A., Gangopadhyay, S., Gangopadhyay, A.K.: Lattice attack on group ring NTRU: the case of the dihedral group (2023). https://doi.org/10.48550/arXiv.2309.08304

  36. Laarhoven, T.: Search problems in cryptography: from fingerprinting to lattice sieving. Phd thesis, Eindhoven University of Technology (2015). https://research.tue.nl/en/publications/search-problems-in-cryptography-from-fingerprinting-to-lattice-si

  37. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(ARTICLE), 515–534 (1982). https://doi.org/10.1007/BF01457454

  38. Ling, C., Mendelsohn, A.: NTRU in quaternion algebras of bounded discriminant. In: Johansson, T., Smith-Tone, D. (eds.) Post-Quantum Cryptography. PQCrypto 2023. LNCS, vol. 14154, pp. 256–290. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-40003-2_10

  39. Makhijani, N., Sharma, R., Srivastava, J.: Units in finite dihedral and quaternion group algebras. J. Egypt. Math. Soc. 24(1), 5–7 (2016). https://doi.org/10.1016/j.joems.2014.08.001

    Article  MathSciNet  Google Scholar 

  40. Malekian, E., Zakerolhosseini, A., Mashatan, A.: QTRU : a lattice attack resistant version of NTRU PKCS based on quaternion algebra. IACR Cryptology ePrint Archive 2009 (2009). https://eprint.iacr.org/2009/386

  41. May, A.: How to meet ternary LWE keys. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 701–731. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_24

    Chapter  Google Scholar 

  42. Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal overhead. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 276–294. SIAM (2014)

    Google Scholar 

  43. Miyata, T.: On the units of the integral group ring of a dihedral group. J. Math. Soc. Jpn. 32(4) (1980)

    Google Scholar 

  44. Peikert, C.: A decade of lattice cryptography. Found. Trends® Theor. Comput. Sci. 10(4), 283–424 (2016)

    Google Scholar 

  45. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci. 53(2–3), 201–224 (1987). https://doi.org/10.1016/0304-3975(87)90064-8

    Article  MathSciNet  Google Scholar 

  46. Silverman, J.H.: Almost Inverses and Fast NTRU Key Creation. NTRU Cryptosystems Technical report \(\#14\) (1999)

    Google Scholar 

  47. Singh, S., Padhye, S.: Cryptanalysis of NTRU with n public keys. In: 2017 ISEA Asia Security and Privacy (ISEASP), pp. 1–6 (2017). https://doi.org/10.1109/ISEASP.2017.7976980

  48. Development team, T.F.: FPLLL, a lattice reduction library, Version: 5.4.4 (2023). https://github.com/fplll/fplll

  49. Development team, T.F.: FPYLLL, a Python wraper for the fplll lattice reduction library, Version: 0.5.9 (2023). https://github.com/fplll/fpylll

  50. Truman, K.R.: Analysis and Extension of Non-Commutative NTRU. PhD dissertation, University of Maryland (2007). https://drum.lib.umd.edu/handle/1903/7344

  51. van Hoof, I., Kirshanova, E., May, A.: Quantum key search for ternary LWE. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 117–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_7

    Chapter  Google Scholar 

  52. Vats, N.: NNRU, a noncommutative analogue of NTRU (2009). https://arxiv.org/abs/0902.1891

  53. Working Group of the C/MM Committee and others: IEEE P1363.1 Standard Specification for Public-Key Cryptographic Techniques Based on Hard Problems over Lattices (2009)

    Google Scholar 

  54. Yasuda, T., Dahan, X., Sakurai, K.: Characterizing NTRU-variants using group ring and evaluating their lattice security. IACR Cryptol. ePrint Arch., p. 1170 (2015). http://eprint.iacr.org/2015/1170

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Raya , Vikas Kumar or Sugata Gangopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raya, A., Kumar, V., Gangopadhyay, S. (2024). DiTRU: A Resurrection of NTRU over Dihedral Group. In: Vaudenay, S., Petit, C. (eds) Progress in Cryptology - AFRICACRYPT 2024. AFRICACRYPT 2024. Lecture Notes in Computer Science, vol 14861. Springer, Cham. https://doi.org/10.1007/978-3-031-64381-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64381-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64380-4

  • Online ISBN: 978-3-031-64381-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics