Skip to main content

TooLIP: How to Find New Instances of FiLIP Cipher with Smaller Key Size and New Filters

  • Conference paper
  • First Online:
Progress in Cryptology - AFRICACRYPT 2024 (AFRICACRYPT 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14861))

Included in the following conference series:

  • 200 Accesses

Abstract

In this article, we propose a new tool to evaluate the security of instances of FiLIP cipher. TooLIP is user friendly, it automatically evaluates the cost of several attacks on user-defined Boolean functions. It allows to test new families of filters that are more homomorphic friendly for recent techniques of evaluations, and is designed to easily add new attacks, or change parameters in the considered attacks. To demonstrate our tool we apply it in three contexts. First we show how the keysize can be reduced for former instances with XOR-Threshold functions when the amount of encrypted plaintext obtained by the adversary is limited. Then, we use TooLIP to determine secure instances with filters in less variables for two new families of Boolean functions, leading to a more efficient evaluation and/or a reduced bandwidth. Finally, we apply it to find other instances with filters where we know only (bounds on) the algebraic immunity and resiliency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\lambda \) being the security parameter.

  2. 2.

    Notice that in this context time complexity refers to the expected running time of the algorithm, while data complexity refers to the size of the keystream bits’ sample.

  3. 3.

    In terms of being subject to one of the consider attacks.

  4. 4.

    If the complexity of the attack depends on more than one criterion, one has to categorize the function according to all of them. The overall strategy remains unchanged.

  5. 5.

    See Sect. 3.1.

References

  1. Armknecht, F., Carlet, C., Gaborit, P., Künzli, S., Meier, W., Ruatta, O.: Efficient computation of algebraic immunity for algebraic and fast algebraic attacks. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 147–164. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_10

    Chapter  Google Scholar 

  2. Applebaum, B., Lovett, S.: Algebraic attacks against random local functions and their countermeasures. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC. ACM Press (2016)

    Google Scholar 

  3. Applebaum, B., Lovett, S.: Algebraic attacks against random local functions and their countermeasures. SIAM J. Comput. 52–79 (2018)

    Google Scholar 

  4. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)

    Article  MathSciNet  Google Scholar 

  5. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. Cryptology ePrint Archive, Paper 2015/046 (2015)

    Google Scholar 

  6. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17

    Chapter  Google Scholar 

  7. Bonte, C., Iliashenko, I., Park, J., Pereira, H.V.L., Smart, N.P.: FINAL: faster FHE instantiated with NTRU and LWE. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13792, pp. 188–215. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22966-4_7

    Chapter  Google Scholar 

  8. Bellare, M., Yee, B.: Forward-security in private-key cryptography. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36563-X_1

    Chapter  Google Scholar 

  9. Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, Cambridge (2021)

    Google Scholar 

  10. Couteau, G., Dupin, A., Méaux, P., Rossi, M., Rotella, Y.: On the concrete security of Goldreich’s pseudorandom generator. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol. 11273, pp. 96–124. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_4

    Chapter  Google Scholar 

  11. Cong, K., Das, D., Park, J., Pereira, H.V.L.: SortingHat: efficient private decision tree evaluation via homomorphic encryption and transciphering. In: ACM SIGSAC Conference on Computer and Communications Security, CCS 2022, pp. 563–577 (2022)

    Google Scholar 

  12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1

    Chapter  Google Scholar 

  13. Cho, J., et al.: Transciphering framework for approximate homomorphic encryption. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 640–669. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_22

    Chapter  Google Scholar 

  14. Cosseron, O., Hoffmann, C., Méaux, P., Standaert, F.-X.: Towards case-optimized hybrid homomorphic encryption - featuring the Elisabeth stream cipher. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13793, pp. 32–67. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22969-5_2

    Chapter  Google Scholar 

  15. Cid, C., Indrøy, J.P., Raddum, H.: FASTA – a stream cipher for fast FHE evaluation. In: Galbraith, S.D. (ed.) CT-RSA 2022. LNCS, vol. 13161, pp. 451–483. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95312-6_19

    Chapter  Google Scholar 

  16. Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryption over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 311–328. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_18

    Chapter  Google Scholar 

  17. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_21

    Chapter  Google Scholar 

  18. Carlet, C., Méaux, P.: Boolean functions for homomorphic-friendly stream ciphers. In: Gueye, C.T., Persichetti, E., Cayrel, P.-L., Buchmann, J. (eds.) A2C 2019. CCIS, vol. 1133, pp. 166–182. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36237-9_10

    Chapter  Google Scholar 

  19. Carlet, C., Méaux, P.: A complete study of two classes of Boolean functions: direct sums of monomials and threshold functions. IEEE Trans. Inf. Theory 68(5), 3404–3425 (2022)

    Article  MathSciNet  Google Scholar 

  20. Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_11

    Chapter  Google Scholar 

  21. Courtois, N.T.: Higher order correlation attacks, XL algorithm and cryptanalysis of toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 182–199. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36552-4_13

    Chapter  Google Scholar 

  22. Cogliati, B., Tanguy, T.: Multi-user security bound for filter permutators in the random oracle model. Des. Codes Cryptogr. 87(7), 1621–1638 (2019)

    Article  MathSciNet  Google Scholar 

  23. Dobraunig, C., et al.: Rasta: a cipher with low ANDdepth and Few ANDs per bit. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 662–692. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_22

    Chapter  Google Scholar 

  24. Dobraunig, C., Grassi, L., Helminger, L., Rechberger, C., Schofnegger, M., Walch, R.: Pasta: a case for hybrid homomorphic encryption. IACR Cryptol. ePrint Arch. 731 (2021)

    Google Scholar 

  25. Didier, F.: A new upper bound on the block error probability after decoding over the erasure channel. IEEE Trans. Inf. Theory 52(10), 4496–4503 (2006)

    Article  MathSciNet  Google Scholar 

  26. Duval, S., Lallemand, V., Rotella, Y.: Cryptanalysis of the FLIP family of stream ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 457–475. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_17

    Chapter  Google Scholar 

  27. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24

    Chapter  Google Scholar 

  28. Dupin, A., Méaux, P., Rossi, M.: On the algebraic immunity - resiliency trade-off, implications for Goldreich’s pseudorandom generator. IACR Cryptol. ePrint Arch. 649 (2021)

    Google Scholar 

  29. Faugère, J.-C.: A new efficient algorithm for computing Groebner bases. J. Pure Appl. Algebra 139, 61–88 (1999)

    Article  MathSciNet  Google Scholar 

  30. Faugère, J.C.: A new efficient algorithm for computing Grobner bases without reduction to zero. In: Workshop on application of Groebner Bases 2002, Catania, Spain (2002)

    Google Scholar 

  31. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49

    Chapter  Google Scholar 

  32. Goldreich, O.: Candidate one-way functions based on expander graphs. Electron. Colloquium Comput. Complexity (ECCC) 7(90) (2000)

    Google Scholar 

  33. Ha, J., et al.: Masta: an he-friendly cipher using modular arithmetic. IEEE Access 8, 194741–194751 (2020)

    Article  Google Scholar 

  34. Ha, J., Kim, S., Lee, B., Lee, J., Son, M.: Rubato: noisy ciphers for approximate homomorphic encryption. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13275, pp. 581–610. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06944-4_20

    Chapter  Google Scholar 

  35. Hebborn, P., Leander, G.: Dasta - alternative linear layer for rasta. IACR Trans. Symmetric Cryptol. 2020(3), 46–86 (2020)

    Article  Google Scholar 

  36. Hoffmann, C., Méaux, P., Ricosset, T.: Transciphering, using FiLIP and TFHE for an efficient delegation of computation. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 39–61. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7_3

    Chapter  Google Scholar 

  37. Hoffmann, C., Méaux, P., Standaert, F.-X.: The patching landscape of Elisabeth-4 and the mixed filter permutator paradigm. IACR Cryptol. ePrint Arch. 1895 (2023)

    Google Scholar 

  38. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_20

    Chapter  Google Scholar 

  39. Lobanov, M.S.: Exact relations between nonlinearity and algebraic immunity. J. Appl. Ind. Math. 3(3), 367–376 (2009)

    Article  MathSciNet  Google Scholar 

  40. Méaux, P., Carlet, C., Journault, A., Standaert, F.-X.: Improved filter permutators: combining symmetric encryption design, Boolean functions, low complexity cryptography, and homomorphic encryption, for private delegation of computations. Cryptology ePrint Archive, Report 2019/483 (2019)

    Google Scholar 

  41. Méaux, P., Carlet, C., Journault, A., Standaert, F.-X.: Improved filter permutators for efficient FHE: better instances and implementations. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) INDOCRYPT 2019. LNCS, vol. 11898, pp. 68–91. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35423-7_4

    Chapter  Google Scholar 

  42. Méaux, P.: On the algebraic immunity of direct sum constructions. Discret. Appl. Math. 320, 223–234 (2022)

    Article  MathSciNet  Google Scholar 

  43. Méaux, P., Journault, A., Standaert, F.-X., Carlet, C.: Towards stream ciphers for efficient FHE with low-noise ciphertexts. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 311–343. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_13

    Chapter  Google Scholar 

  44. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 474–491. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_28

    Chapter  Google Scholar 

  45. Méaux, P., Park, J., Pereira, H.V.L.: Towards practical transciphering for FHE with setup independent of the plaintext space. IACR Cryptol. ePrint Arch. 1531 (2023)

    Google Scholar 

  46. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: CCSW, pp. 113–124. ACM (2011)

    Google Scholar 

  47. Ünal, A.: Worst-case subexponential attacks on PRGs of constant degree or constant locality. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14004, pp. 25–54. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30545-0_2

    Chapter  Google Scholar 

  48. Yang, J., Guo, Q., Johansson, T., Lentmaier, M.: Revisiting the concrete security of Goldreich’s pseudorandom generator. IEEE Trans. Inf. Theory 68(2), 1329–1354 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors were supported by the ERC Advanced Grant no. 787390.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to François Gérard , Agnese Gini or Pierrick Méaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gérard, F., Gini, A., Méaux, P. (2024). TooLIP: How to Find New Instances of FiLIP Cipher with Smaller Key Size and New Filters. In: Vaudenay, S., Petit, C. (eds) Progress in Cryptology - AFRICACRYPT 2024. AFRICACRYPT 2024. Lecture Notes in Computer Science, vol 14861. Springer, Cham. https://doi.org/10.1007/978-3-031-64381-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64381-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64380-4

  • Online ISBN: 978-3-031-64381-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics