Skip to main content

Quasi-optimal Permutation Ranking and Applications to PERK

  • Conference paper
  • First Online:
Progress in Cryptology - AFRICACRYPT 2024 (AFRICACRYPT 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14861))

Included in the following conference series:

  • 190 Accesses

Abstract

A ranking function for permutations maps every permutation of length n to a unique integer between 0 and \(n!-1\). For permutations of size that are of interest in cryptographic applications, evaluating such a function requires multiple-precision arithmetic. This work introduces a quasi-optimal ranking technique that allows us to rank a permutation efficiently without needing a multiple-precision arithmetic library. We present experiments that show the computational advantage of our method compared to the standard lexicographic optimal permutation ranking. As an application of our result, we show how this technique improves the signature sizes and the efficiency of PERK digital signature scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The implementation is available at

    https://github.com/marco-palumbi/quasi-optimal_ranking.

References

  1. Aaraj, N., et al.: PERK version 1.0. NIST’s post-quantum cryptography standardization of additional digital signature schemes project (round 1) (2023). https://pqc-perk.org/

  2. Aaraj, N., et al.: PERK version 1.1 (2023). https://pqc-perk.org/resources.html

  3. Bonet, B.: Efficient algorithms to rank and unrank permutations in lexicographic order. In: Workshop on Search in Artificial Intelligence and Robotics - Technical Report (2008)

    Google Scholar 

  4. Chinese Association for Cryptographic Research. National cryptography algorithm design competition (2020). https://www.cacrnet.org.cn/site/content/854.html

  5. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  6. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Proceedings of the 39th annual ACM symposium on Theory of computing (STOC) (2007)

    Google Scholar 

  7. Kannwischer, M.J., Krausz, M., Petri, R., Yang, S.-J.: pqm4: benchmarking NIST additional post-quantum signature schemes on microcontrollers. Cryptology ePrint Archive, Paper 2024/112 (2024). https://eprint.iacr.org/2024/112

  8. Lehmer, D.H.: Teaching combinatorial tricks to a computer. Combin. Anal. 179–193 (1960)

    Google Scholar 

  9. Leon, J.: Computing automorphism groups of error-correcting codes. IEEE Trans. Inf. Theory 28(3), 496–511 (1982)

    Article  MathSciNet  Google Scholar 

  10. Mytkowicz, T., Diwan, A., Hauswirth, M., Sweeney, P.F.: Producing wrong data without doing anything obviously wrong! ACM Sigplan Not. 44(3), 265–276 (2009)

    Article  Google Scholar 

  11. Myrvold, W., Ruskey, F.: Ranking and unranking permutations in linear time. Inf. Process. Lett. 79(6), 281–284 (2001)

    Article  MathSciNet  Google Scholar 

  12. NIST. Post-quantum cryptography standardization (2017). https://csrc.nist.gov/projects/post-quantum-cryptography

  13. NIST. Post-quantum cryptography: Digital signature schemes (2023). https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

  14. The GNU Project. GMP: The GNU Multiple Precision Arithmetic Library (2023). https://gmplib.org/. [version 6.2.1]

  15. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall Press, USA (2009)

    Google Scholar 

  16. Shamir, A.: An efficient identification scheme based on permuted kernels (extended abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–609. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_54

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Budroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bettaieb, S., Budroni, A., Palumbi, M., Filho, D.L.G. (2024). Quasi-optimal Permutation Ranking and Applications to PERK. In: Vaudenay, S., Petit, C. (eds) Progress in Cryptology - AFRICACRYPT 2024. AFRICACRYPT 2024. Lecture Notes in Computer Science, vol 14861. Springer, Cham. https://doi.org/10.1007/978-3-031-64381-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64381-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64380-4

  • Online ISBN: 978-3-031-64381-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics