Abstract
The works of CRYPTO ’18 [1] and SAC ’21 [15] exist in the \(\varSigma \)-protocol setting in order to prove knowledge that a commitment to a scalar is the discrete logarithm of the commitment to an elliptic curve point. While the former, original work [1] is inadequately specified so that detailed analysis can be performed, we show that the latter follow up work, the \(\varSigma \)-protocol of ZKAttest [15], suffers from soundness issues that invalidate its security proof. Further, we also provide a practical attack on ZKAttest’s public implementation, and point out other flaws in it that differ from the paper’s specification. Lastly, we introduce two new protocols, \(\textsf{CDLSS}\) and \(\textsf{CDLSD}\), which are sound, provably secure, have concrete security bounds, and perform favourably in comparison to the prior works when the soundness issue is taken into account.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This is likely also the case in [1], however the specification of the protocol is not sufficiently detailed.
- 2.
Using the common compressed representation for elliptic curve points, which is the x-coordinate along with a parity bit, one does not need to evaluate the curve equation each time.
- 3.
See https://charts.woobull.com/bitcoin-hash-price/, which places the value of \(10^{12}\) SHA-256 hashes at approximately \(10^{-6}\) USD, assuming modern ASICs can be set up to handle arbitrary fixed length input.
- 4.
For the calculations of these estimates, see the attached Sage script as seen in https://github.com/brave-experiments/CDLS.
- 5.
References
Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for composite statements. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 643–673. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_22
Attema, T., Fehr, S., Klooß, M.: Fiat-Shamir transformation of multi-round interactive proofs. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022, Part I. LNCS, vol. 13747, pp. 113–142. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22318-1_5
Babai, L.: Trading group theory for randomness. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC 1985, pp. 421–429. Association for Computing Machinery, New York (1985). https://doi.org/10.1145/22145.22192
Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 103–112. Association for Computing Machinery, New York (1988). https://doi.org/10.1145/62212.62222
Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_31
Broker, R.: Constructing elliptic curves of prescribed order. Ph.D. thesis (2006)
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Computer Society Press (2018). https://doi.org/10.1109/SP.2018.00020
Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_15
Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 107–122. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_8
Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252
Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_7
Cramer, R.: Modular design of secure yet practical cryptographic protocols. Ph.D. thesis (1997)
Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19
Damgård, I.: On sigma-protocols (2010). https://www.cs.au.dk/~ivan/Sigma.pdf. https://www.cs.au.dk/~ivan/Sigma.pdf
Faz-Hernández, A., Ladd, W., Maram, D.: ZKAttest: ring and group signatures for existing ECDSA keys. In: AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 68–83. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99277-4_4
Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol. 1(2), 77–94 (1988). https://doi.org/10.1007/BF02351717
Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: 22nd ACM STOC, pp. 416–426. ACM Press (1990). https://doi.org/10.1145/100216.100272
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052225
Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 268–282. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032038
Hazay, C., Lindell, Y.: Sigma protocols and efficient zero-knowledge\(^{1}\). In: Hazay, C., Lindell, Y. (eds.) Efficient Secure Two-Party Protocols. ISC, pp. 147–175. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14303-8_6
Krenn, S., Orrù, M.: Proposal: \(\sigma \)-protocols (2021). https://docs.zkproof.org/pages/standards/accepted-workshop4/proposal-sigma.pdf
Nguyen, K.Q., Bao, F., Mu, Y., Varadharajan, V.: Zero-knowledge proofs of possession of digital signatures and its applications. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 103–118. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-47942-0_9
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9
Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991). https://doi.org/10.1007/BF00196725
Silverman, J.H.: The geometry of elliptic curves. In: Silverman, J.H. (ed.) The Arithmetic of Elliptic Curves. GTM, vol. 106, pp. 41–114. Springer, New York (2009). https://doi.org/10.1007/978-0-387-09494-6_3
Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and Privacy, pp. 926–943. IEEE Computer Society Press (2018). https://doi.org/10.1109/SP.2018.00060
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Celi, S., Levin, S., Rowell, J. (2024). CDLS: Proving Knowledge of Committed Discrete Logarithms with Soundness. In: Vaudenay, S., Petit, C. (eds) Progress in Cryptology - AFRICACRYPT 2024. AFRICACRYPT 2024. Lecture Notes in Computer Science, vol 14861. Springer, Cham. https://doi.org/10.1007/978-3-031-64381-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-64381-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-64380-4
Online ISBN: 978-3-031-64381-1
eBook Packages: Computer ScienceComputer Science (R0)