Abstract
Cryptographic accumulators, introduced in 1993 by Benaloh and De Mare, represent a set with a concise value and offer proofs of (non-)membership. Accumulators have evolved, becoming essential in anonymous credentials, e-cash, and blockchain applications. Various properties like dynamic and universal emerged for specific needs, leading to multiple accumulator definitions. In 2015, Derler, Hanser, and Slamanig proposed a unified model, but new properties, including zero-knowledge security, have arisen since. We offer a new definition of accumulators, based on Derler et al.’s, that is suitable for all properties. We also introduce a new security property, unforgeability of private evaluation, to protect accumulator from forgery and we verify this property in Barthoulot, Blazy, and Canard’s recent accumulator. Finally we provide discussions on security properties of accumulators and on the delegatable (non-)membership proofs property.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In some works, “collision resistance” is called “collision freeness”, “soundness” or “set binding” [22]. We will only use the terms collision resistance in the following.
- 2.
Applying a single action applied to n items instead of one action per item.
- 3.
[55] introduced the chosen element attack (CEA) to characterize collision resistance in dynamic accumulators. Notice that this term has been discontinued or abandoned.
References
Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. Technical Repost MSR-TR-2010-170, Microsoft Research (2010)
Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 423–440. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_26
Asano, T.: A revocation scheme with minimal storage at receivers. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 433–450. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_27
Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for DDH groups and their application to attribute-based anonymous credential systems. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 295–308. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7_20
Au, M.H., Wu, Q., Susilo, W., Mu, Y.: Compact E-cash from bounded accumulator. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 178–195. Springer, Heidelberg (2006). https://doi.org/10.1007/11967668_12
Ayebie, E.B., Souidi, E.M.: New code-based cryptographic accumulator and fully dynamic group signature. DCC 90(12), 2861–2891 (2022). https://doi.org/10.1007/s10623-022-01007-5
Baldimtsi, F., et al.: Accumulators with applications to anonymity-preserving revocation. Cryptology ePrint Archive, Paper 2017/043 (2017). https://eprint.iacr.org/2017/043
Baldimtsi, F., et al.: Accumulators with applications to anonymity-preserving revocation, pp. 301–315 (2017). https://doi.org/10.1109/EuroSP.2017.13
Badimtsi, F., Canetti, R., Yakoubov, S.: Universally composable accumulators. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 638–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_27
Baldimtsi, F., Karantaidou, I., Raghuraman, S.: Oblivious accumulators. In: Tang, Q., Teague, V. (eds.) PKC 2024. LNCS, vol. 14602, pp. 99–131. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-57722-2_4
Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_33
Barthoulot, A., Blazy, O., Canard, S.: Dually computable cryptographic accumulators and their application to attribute based encryption. Cryptology ePrint Archive, Paper 2023/1277 (2023). https://eprint.iacr.org/2023/1277
Barthoulot, A., Blazy, O., Canard, S.: Locally verifiable signatures and cryptographic accumulators: different names, same thing? (2023)
Barthoulot, A., Blazy, O., Canard, S.: Cryptographic accumulators: new definitions, enhanced security, and delegatable proofs. Cryptology ePrint Archive, Paper 2024/657 (2024). https://eprint.iacr.org/2024/657
Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_24
Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applications to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_20
Buldas, A., Laud, P., Lipmaa, H.: Eliminating counterevidence with applications to accountable certificate management. J. Comput. Secur. 10, 273–296 (2002). https://doi.org/10.3233/JCS-2002-10304
Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_27
Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_5
Campanelli, M., Fiore, D., Han, S., Kim, J., Kolonelos, D., Oh, H.: Succinct zero-knowledge batch proofs for set accumulators. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022, pp. 455–469. ACM Press (2022). https://doi.org/10.1145/3548606.3560677
Canard, S., Gouget, A.: Multiple denominations in E-cash with compact transaction data. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 82–97. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3_9
Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5
Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures via asymmetric pairings. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 122–140. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36334-4_8
Couteau, G., Lipmaa, H., Parisella, R., Ødegaard, A.T.: Efficient NIZKs for algebraic sets. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 128–158. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_5
Damgard, I., Triandopoulos, N.: Supporting non-membership proofs with bilinear-map accumulators. Cryptology ePrint Archive, Report 2008/538 (2008). http://eprint.iacr.org/2008/538
Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, additional properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 127–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_7
Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_36
Fazio, N., Nicolosi, A.: Cryptographic accumulators: definitions, constructions and applications (2002)
Gentry, C., Ramzan, Z.: RSA accumulator based broadcast encryption. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 73–86. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30144-8_7
Ghosh, E., Ohrimenko, O., Papadopoulos, D., Tamassia, R., Triandopoulos, N.: Zero-knowledge accumulators and set algebra. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 67–100. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_3
Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19
Jia, H., Chen, Y., Lan, J., Huang, K., Wang, J.: Efficient revocable hierarchical identity-based encryption using cryptographic accumulators. Int. J. Inf. Secur. (2018)
Lewko, A.B., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (May 2011). https://doi.org/10.1007/978-3-642-20465-4_30
Li, F., Hu, Y., Zhang, C.: An identity-based signcryption scheme for multi-domain ad hoc networks. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 373–384. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5_24
Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5_17
Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_1
Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from polynomial commitments to pairing-based accumulators from simple assumptions. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP 2016. LIPIcs, vol. 55, pp. 30:1–30:14. Schloss Dagstuhl (Jul 2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.30
Lipmaa, H.: Secure accumulators from Euclidean rings without trusted setup. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7_14
Fauzi, P., Lipmaa, H., Zhang, B.: Efficient non-interactive zero knowledge arguments for set operations. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 216–233. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_14
Lipmaa, H., Parisella, R.: Set (non-)membership NIZKs from determinantal accumulators. Cryptology ePrint Archive, Paper 2022/1570 (2022). https://eprint.iacr.org/2022/1570
Jhanwar, M.P., Safavi-Naini, R.: Compact accumulator using lattices. In: Chakraborty, R.S., Schwabe, P., Solworth, J. (eds.) SPACE 2015. LNCS, vol. 9354, pp. 347–358. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24126-5_20
de Meer, H., Liedel, M., Pohls, H.C., Posegga, J.: Indistinguishability of one-way accumulators. Technical report MIP-1210, Faculty of Computer Science and Mathematics (FIM), University of Passau (2012)
de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: Redactable signature schemes for trees with signer-controlled non-leaf-redactions. In: Obaidat, M.S., Filipe, J. (eds.) ICETE 2012. CCIS, vol. 455, pp. 155–171. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44791-8_10
Nguyen, K., Tang, H., Wang, H., Zeng, N.: New code-based privacy-preserving cryptographic constructions. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II. LNCS, vol. 11922, pp. 25–55. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_2
Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_19
Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_19
Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_13
Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated data structures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 353–370. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_22
Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of operations on dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 91–110. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_6
Ren, Y., Liu, X., Wu, Q., Wang, L., Zhang, W.: Cryptographic accumulator and its application: a survey. Secur. Commun. Netw. 2022, 1–13 (2022). https://doi.org/10.1155/2022/5429195
Reyzin, L., Yakoubov, S.: Efficient asynchronous accumulators for distributed PKI. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 292–309. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_16
Reyzin, L., Yakoubov, S.: Efficient asynchronous accumulators for distributed PKI. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 292–309. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_16
Tomescu, A., Bhupatiraju, V., Papadopoulos, D., Papamanthou, C., Triandopoulos, N., Devadas, S.: Transparency logs via append-only authenticated dictionaries. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 1299–1316. ACM Press (2019). https://doi.org/10.1145/3319535.3345652
Tsudik, G., Xu, S.: Accumulating composites and improved group signing. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 269–286. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5_16
Wang, P., Wang, H., Pieprzyk, J.: A new dynamic accumulator for batch updates. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 98–112. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77048-0_8
Wang, X., Chow, S.S.M.: Cross-domain access control encryption: arbitrary-policy, constant-size, efficient. In: 2021 IEEE Symposium on Security and Privacy, pp. 748–761. IEEE Computer Society Press (2021). https://doi.org/10.1109/SP40001.2021.00023
Acknowledgement
The authors would like to thank anonymous reviewers for their helpful discussions and valuable comments. This work is supported in part by the Banque Publique d’Investissement under the VisioConfiance project and the French ANR SANGRIA project (ANR-21-CE39-0006).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Barthoulot, A., Blazy, O., Canard, S. (2024). Cryptographic Accumulators: New Definitions, Enhanced Security, and Delegatable Proofs. In: Vaudenay, S., Petit, C. (eds) Progress in Cryptology - AFRICACRYPT 2024. AFRICACRYPT 2024. Lecture Notes in Computer Science, vol 14861. Springer, Cham. https://doi.org/10.1007/978-3-031-64381-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-64381-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-64380-4
Online ISBN: 978-3-031-64381-1
eBook Packages: Computer ScienceComputer Science (R0)