Skip to main content

iUC-Secure Distributed File Transfer from Standard Attribute-Based Encryption

  • Conference paper
  • First Online:
Progress in Cryptology - AFRICACRYPT 2024 (AFRICACRYPT 2024)

Abstract

Attribute-Based Encryption (\(\textsf {ABE}\)) stands as a cryptographic cornerstone, enabling access control to messages based on user attributes. The security definition of standard \(\textsf {ABE}\) is shown to be impossible in Universal Composability (UC) against an active adversary. To overcome this issue, existing formal UC security definitions of \(\textsf {ABE}\) rely on additional properties for \(\textsf {ABE}\), necessary to prove security against an active adversary, excluding standard \(\textsf {ABE}\) by definition. In light of the composability feature offered by UC and the absence of ideal functionality tailored for standard \(\textsf {ABE}\), we propose the two following contributions: (1) We construct the first ideal functionality \(\mathcal {F}_{\textsf{ABE}}\) for \(\textsf {ABE}\) which, under reasonable hypothesis against static corruption, can be realized using an \(\text {IND-CCA2}\)-secure \(\textsf {ABE}\) scheme; and (2) our \(\mathcal {F}_{\textsf{ABE}}\) leads us to propose a protocol solving a simple yet highly practical, world-scaled company-focused problem: efficient file transfer. The proposed construction provides data integrity, sender authentication, attribute-based file access, featured with constant data size transferred between users. This is achieved by relying on two efficient building blocks: \(\textsf {ABE}\) and signature, which are layered atop of the hash-based distributed storage system \(\textsf{IPFS}\). Our protocol, strengthened by a formal security definition and analysis under the Universally Composable (UC) framework called iUC, is proved to realize our problem-oriented authenticated attribute-based file transfer ideal functionality. Finally, we implement our proposal with a proof-of-concept written in Rust, and show it is practical and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An \(\text {IND-CCA2}\)-secure scheme can be efficiently derived from any \(\text {IND-CPA}\)-secure scheme via the Fujisaki-Okamoto transform [13].

References

  1. Object storage devices (2004). http://webstore.ansi.org/standards/incits/ansiincits4002004

  2. Daft: Proof-of-concept (2024). https://anonymous.4open.science/r/DAFT/

  3. Abe, M., Ambrona, M.: Blind key-generation attribute-based encryption for general predicates. Des. Codes Crypt. 90, 08 (2022)

    Article  MathSciNet  Google Scholar 

  4. Agrawal, S., Chase, M.: FAME: fast attribute-based message encryption. In: Thuraisingham, B., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, 30 October–03 November 2017, pp. 665–682. ACM (2017)

    Google Scholar 

  5. Asghar, M.R., Ion, M., Russello, G., Crispo, B.: ESPOON ERBAC: enforcing security policies in outsourced environments. Cryptology ePrint Archive, Paper 2013/587 (2013). https://eprint.iacr.org/2013/587

  6. Buchmann, J., et al.: Safe: a secure and efficient long-term distributed storage system. Cryptology ePrint Archive, Paper 2020/690 (2020). https://eprint.iacr.org/2020/690

  7. Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Neven, G.: Oblivious transfer with hidden access control from attribute-based encryption. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 559–579. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_31

    Chapter  Google Scholar 

  8. Camenisch, J., Krenn, S., Küsters, R., Rausch, D.: iUC: flexible universal composability made simple. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 191–221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_7

    Chapter  Google Scholar 

  9. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, Las Vegas, Nevada, USA, 14–17 October 2001, pp. 136–145. IEEE Computer Society (2001)

    Google Scholar 

  10. Ferrara, A.L., Fuchsbauer, G., Warinschi, B.: Cryptographically enforced RBAC. Cryptology ePrint Archive, Paper 2013/492 (2013). https://eprint.iacr.org/2013/492

  11. Finney, H., Donnerhacke, L., Callas, J., Thayer, R.L., Shaw, D.: OpenPGP Message Format. RFC 4880, November 2007

    Google Scholar 

  12. Freudenthal, E., Pesin, T., Port, L., Keenan, E., Karamcheti, V.: dRBAC: distributed role-based access control for dynamic coalition environments. In: Proceedings 22nd International Conference on Distributed Computing Systems, pp. 411–420 (2002)

    Google Scholar 

  13. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. J. Cryptol. 26(1), 80–101 (2013)

    Article  MathSciNet  Google Scholar 

  14. Garay, J.A., Gennaro, R., Jutla, C., Rabin, T.: Secure distributed storage and retrieval. Cryptology ePrint Archive, Paper 1998/025 (1998). https://eprint.iacr.org/1998/025

  15. Halevi, S., Karger, P.A., Naor, D.: Enforcing confinement in distributed storage and a cryptographic model for access control. IACR Cryptology ePrint Archive, p. 169 (2005)

    Google Scholar 

  16. Hohenberger, S., Lu, G., Waters, B., Wu, D.J.: Registered attribute-based encryption. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14006, pp. 511–542. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30620-4_17

    Chapter  Google Scholar 

  17. Küsters, R., Tuengerthal, M., Rausch, D.: The IITM model: a simple and expressive model for universal composability. J. Cryptol. 33(4), 1461–1584 (2020)

    Article  MathSciNet  Google Scholar 

  18. Küsters, R., Tuengerthal, M., Rausch, D.: Joint state composition theorems for public-key encryption and digital signature functionalities with local computation. J. Cryptol. 33(4), 1585–1658 (2020)

    Article  MathSciNet  Google Scholar 

  19. Liu, B., Warinschi, B.: Universally composable cryptographic role-based access control. Cryptology ePrint Archive, Paper 2016/902 (2016). https://eprint.iacr.org/2016/902

  20. Vandenwauver, M., Govaerts, R., Vandewalle, J.: Role based access control in distributed systems. In: Katsikas, S. (ed.) Communications and Multimedia Security. IAICT, pp. 169–177. Springer, Boston, MA (1997). https://doi.org/10.1007/978-0-387-35256-5_13

    Chapter  Google Scholar 

Download references

Acknowledgement

We thank the anonymous referees for their useful suggestions and remarks. This work was partially supported by the DataLake-For-Nuclear (D4N) project funded by the BPI institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pascal Lafourcade , Gael Marcadet or Léo Robert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lafourcade, P., Marcadet, G., Robert, L. (2024). iUC-Secure Distributed File Transfer from Standard Attribute-Based Encryption. In: Vaudenay, S., Petit, C. (eds) Progress in Cryptology - AFRICACRYPT 2024. AFRICACRYPT 2024. Lecture Notes in Computer Science, vol 14861. Springer, Cham. https://doi.org/10.1007/978-3-031-64381-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64381-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64380-4

  • Online ISBN: 978-3-031-64381-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics