Skip to main content

On the Generalizations of the Rank Metric over Finite Chain Rings

  • Conference paper
  • First Online:
Progress in Cryptology - AFRICACRYPT 2024 (AFRICACRYPT 2024)

Abstract

The rank metric over finite fields has received a lot of attention these last decades. Several works propose generalizations of this metric to finite rings, each one using a particular notion of module theory. The first work that generalizes the rank metric to finite rings defines a new metric over finite principal ideal rings by replacing the notion of dimension of vector spaces by the minimum number of generators of modules. A second work also defines a new metric over Galois rings by using the notion of cardinal of modules, while another idea is to use the length of modules as a generalization of the dimension. In this paper, we study these three generalizations of the rank metric from fields to finite chain rings. We show that the generalizations using the length and the cardinal of modules are decoding equivalent, and give connections between the minimum distances and the packing radii of the three metrics. These links make it possible to show that up to the packing radii, the generalization using the minimum number of generators of modules corrects more errors than the metric using the length and the one defined by the cardinal of modules. Finally, we show that the use of linear codes with the metric based on the minimum number of generators in a McEliece type encryption scheme results in a cryptosystem with smaller public key sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the theory of error-correcting codes, the packing radius of a code, also called error correction capability, can be defined as the largest value of t for which the balls of radius t centred on distinct codewords are all pairwise disjoint.

  2. 2.

    \({{\,\textrm{argmin}\,}}\{d(\boldsymbol{\textrm{x}}, \boldsymbol{\textrm{y}}): \boldsymbol{\textrm{x}}\in \mathcal {C}\} = \{\boldsymbol{\textrm{x}}_0 \in \mathcal {C}: d(\boldsymbol{\textrm{x}}_0, \boldsymbol{\textrm{y}}) \leqslant d(\boldsymbol{\textrm{x}}, \boldsymbol{\textrm{y}}), \forall \boldsymbol{\textrm{x}}\in \mathcal {C}\}\).

  3. 3.

    For more details on chain rings, we refer the readers to [27, 30].

  4. 4.

    Note that the definition of the shape in this paper corresponds to the conjugation of the shape in descending order defined in [19, 21].

References

  1. Alagic, G., et al.: Status report on the second round of the NIST post-quantum cryptography standardization process. US Department of Commerce, NIST 2 (2020)

    Google Scholar 

  2. Aragon, N., Dyseryn, V., Gaborit, P., Loidreau, P., Renner, J., Wachter-Zeh, A.: LowMS: a new rank metric code-based KEM without ideal structure. Des. Codes Crypt. 92(4), 1075–1093 (2024)

    Article  MathSciNet  Google Scholar 

  3. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. Inform. Theory 24(3), 384–386 (1978)

    Article  MathSciNet  Google Scholar 

  4. Bernstein, D.J., et al.: Classic McEliece: conservative code-based cryptography (2019). https://classic.mceliece.org. Second round submission to the NIST post-quantum cryptography call

  5. Bucerzan, D., Dragoi, V., Kalachi, H.T.: Evolution of the McEliece public key encryption scheme. In: Farshim, P., Simion, E. (eds.) SecITC 2017. LNCS, vol. 10543, pp. 129–149. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69284-5_10

    Chapter  Google Scholar 

  6. Campello, A., Jorge, G.C., Strapasson, J.E., Costa, S.I.: Perfect codes in the lp metric. Eur. J. Comb. 53, 72–85 (2016)

    Article  Google Scholar 

  7. Delsarte, P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory, Ser. A 25(3), 226–241 (1978)

    Google Scholar 

  8. Deza, E., Deza, M.M., Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Cham (2009)

    Book  Google Scholar 

  9. D’Oliveira, R.G., Firer, M.: Channel metrization. Eur. J. Comb. 80, 107–119 (2019)

    Article  MathSciNet  Google Scholar 

  10. D’Oliveira, R.G.L., Firer, M.: The packing radius of a code and partitioning problems: the case for poset metrics on finite vector spaces. Discret. Math. 338(12), 2143–2167 (2015)

    Article  MathSciNet  Google Scholar 

  11. Epelde, M., Rúa, I.F.: Cardinal rank metric codes over Galois rings. Finite Fields Appl. 77, 101946 (2022)

    Article  MathSciNet  Google Scholar 

  12. Feng, C., Nóbrega, R.W., Kschischang, F.R., Silva, D.: Communication over finite-chain-ring matrix channels. IEEE Trans. Inf. Theory 60(10), 5899–5917 (2014)

    Article  MathSciNet  Google Scholar 

  13. Gabidulin, È.M.: Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21(1), 3–16 (1985)

    MathSciNet  Google Scholar 

  14. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their application in cryptology. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_41

    Chapter  Google Scholar 

  15. Gaborit, P., Murat, G., Ruatta, O., Zémor, G.: Low rank parity check codes and their application to cryptography. In: Proceedings of the Workshop on Coding and Cryptography, WCC 2013, Bergen, Norway (2013). www.selmer.uib.no/WCC2013/pdfs/Gaborit.pdf

  16. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decoding problem. IEEE Trans. Inf. Theory 62(2), 1006–1019 (2016). https://doi.org/10.1109/TIT.2015.2511786

    Article  MathSciNet  Google Scholar 

  17. Gorla, E., Ravagnani, A.: An algebraic framework for end-to-end physical-layer network coding. IEEE Trans. Inf. Theory 64(6), 4480–4495 (2017)

    Article  MathSciNet  Google Scholar 

  18. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)

    Article  MathSciNet  Google Scholar 

  19. Honold, T., Landjev, I.: Linear codes over finite chain rings. Electron. J. Comb. 7, R11–R11 (2000)

    Google Scholar 

  20. Horlemann, A.L.: Code-based cryptography with the subspace metric. In: SIAM Conference on Applied Geometry (2021)

    Google Scholar 

  21. Kalachi, H.T., Kamche, H.T.: On the rank decoding problem over finite principal ideal rings. Adv. Math. Commun. (2023). https://doi.org/10.3934/amc.2023003

  22. Kamche, H.T., Kalachi, H.T.: Solving systems of algebraic equations over finite commutative rings and applications. In: Applicable Algebra in Engineering, Communication and Computing, pp. 1–29 (2024)

    Google Scholar 

  23. Kamche, H.T., Kalachi, H.T., Djomou, F.R.K., Fouotsa, E.: Low-rank parity-check codes over finite commutative rings. In: Applicable Algebra in Engineering, Communication and Computing, pp. 1–27 (2024)

    Google Scholar 

  24. Kamche, H.T., Mouaha, C.: Rank-metric codes over finite principal ideal rings and applications. IEEE Trans. Inf. Theory 65(12), 7718–7735 (2019)

    Article  MathSciNet  Google Scholar 

  25. Koetter, R., Kschischang, F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008)

    Article  MathSciNet  Google Scholar 

  26. Kunz, E.: Introduction to Commutative Algebra and Algebraic Geometry. Springer, Cham (1985)

    Google Scholar 

  27. McDonald, B.R.: Finite Rings with Identity, vol. 28. Marcel Dekker Incorporated (1974)

    Google Scholar 

  28. McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory, pp. 114–116. Jet Propulsion Lab (1978). dSN Progress Report 44

    Google Scholar 

  29. Melchor, C.A., et al.: Rollo–rank-ouroboros, lake & locker. Round-2 submission to the NIST PQC project (2019)

    Google Scholar 

  30. Nechaev, A.A.: Finite rings with applications. Handb. Algebra 5, 213–320 (2008)

    MathSciNet  Google Scholar 

  31. NIST: Post-quantum cryptography standardization (2017). https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

  32. Overbeck, R., Sendrier, N.: Code-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 95–145. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_4

    Chapter  Google Scholar 

  33. Panek, L., Firer, M., Alves, M.M.S.: Classification of Niederreiter-Rosenbloom-Tsfasman block codes. IEEE Trans. Inf. Theory 56(10), 5207–5216 (2010)

    Article  MathSciNet  Google Scholar 

  34. Puchinger, S., Renner, J., Rosenkilde, J.: Generic decoding in the sum-rank metric. IEEE Trans. Inf. Theory 68(8), 5075–5097 (2022)

    Article  MathSciNet  Google Scholar 

  35. Puchinger, S., Renner, J., Wachter-Zeh, A., Zumbrägel, J.: Efficient decoding of Gabidulin codes over Galois rings. In: 2021 IEEE International Symposium on Information Theory (ISIT), pp. 25–30. IEEE (2021)

    Google Scholar 

  36. Ritterhoff, S., et al.: FuLeeca: a Lee-based signature scheme. In: Esser, A., Santini, P. (eds.) CBCrypto 2023. LNCS, vol. 14311, pp. 56–83. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-46495-9_4

    Chapter  Google Scholar 

  37. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(4), 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  38. Weger, V., Gassner, N., Rosenthal, J.: A survey on code-based cryptography. In: Coding Theory and Applications V, Applications of Coding Theory in Quantum Computing and Cryptography. Springer, Cham (2022)

    Google Scholar 

  39. Weger, V., Khathuria, K., Horlemann, A.L., Battaglioni, M., Santini, P., Persichetti, E.: On the hardness of the Lee syndrome decoding problem. Adv. Math. Commun. 18(1), 233–266 (2024)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the Swiss Government Excellence for the financial support under grant ESKAS No. 2022.0689. The second author acknowledges the UNESCO-TWAS and the German Federal Ministry of Education and Research (BMBF) for the financial support under the SG-NAPI grant number 4500454079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Talé Kalachi .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Appendices

A Appendix

In this appendix, we use the work of [12] to give a method to find \(|B_{d_{g}}( \boldsymbol{\textrm{0}}, r) |\), \(|B_{d_{l}}( \boldsymbol{\textrm{0}},r)|\), and \(|B_{d_{c}}( \boldsymbol{\textrm{0}},r)|\). Recall that \(d_{l}=\nu d_{c}\), thus \(B_{d_{c}}( \boldsymbol{\textrm{0}},r)=B_{d_{l}}( \boldsymbol{\textrm{0}},\nu r)\). By Proposition 3, a module M over R can be decomposed as

$$\begin{aligned} M\cong \pi ^{\alpha _{1}}R\times \cdots \times \pi ^{\alpha _{s}}R. \end{aligned}$$

This isomorphism can be expressed as

figure a

where

$$\begin{aligned} k_{i}=|\{j\in \{1,\ldots ,s\}:\alpha _{j}=i\}|, \text { for } i=0,\ldots ,\nu -1. \end{aligned}$$

The \(\nu {-}\)tuple \((k_{0},\ldots ,k_{\nu -1})\) is called the type of M and as in [12] the shapeFootnote 4 of M is \((\beta _{1},\ldots ,\beta _{\nu })\) where

$$\begin{aligned} \beta _{1}=k_{0}\text { and }\beta _{i+1}= \beta _{i}+k_{i}\text {, for }i=1,\ldots ,\nu -1. \end{aligned}$$
(6)

The type and the shape of a module can be extended to matrices, so if \(\boldsymbol{\textrm{A}}\) is a matrix of size \(m\times n\) with entries in R, then the type of \(\boldsymbol{\textrm{A}}\) and the shape of \(\boldsymbol{\textrm{A}}\) are respectively the type and the shape of the \(R{-}\)module generated by the column vectors of \(\boldsymbol{\textrm{A}}\). the relationship between the shape of a matrix and its Smith normal form was given in [12].

Over finite fields with q elements, the number of \(k{-}\)dimensional subspaces in an \(n{-}\)dimensional vector space is given by the Gaussian binomial coefficient:

$$\begin{aligned} \left[ \begin{array}{c} n \\ k \end{array} \right] _{q}:=\prod \limits _{i=0}^{k-1}\frac{q^{n}-q^{i}}{q^{k}-q^{i}} \end{aligned}$$

and the number of matrices of size \(m\times n\) of rank k is

$$\begin{aligned} \prod \limits _{i=0}^{k-1}\frac{(q^{n}-q^{i})(q^{m}-q^{i})}{q^{k}-q^{i}}. \end{aligned}$$

These results were extended over finite chain rings using the shape. By [12] the number of \(R{-}\)submodules of \(R^{n}\) of shape \((\beta _{1},\ldots ,\beta _{\nu })\) is

$$\begin{aligned} \prod \limits _{i=1}^{\nu }q^{\beta _{i-1}( n-\beta _{i}) }\left[ \begin{array}{c} n-\beta _{i-1} \\ \beta _{i}-\beta _{i-1}\end{array}\right] _{q} \end{aligned}$$
(7)

and by [12, Theorem 2] the number of matrices of size \(m\times n\) with entries in R of shape \((\beta _{1},\ldots , \beta _{\nu })\) is

$$\begin{aligned} q^{\nu mk}\prod \limits _{j=0}^{k-1}( 1-q^{j-m}) \prod \limits _{i=1}^{\nu }q^{\beta _{i-1}( n-\beta _{i}) }\left[ \begin{array}{c} n-\beta _{i-1} \\ \beta _{i}-\beta _{i-1}\end{array}\right] _{q} \end{aligned}$$
(8)

where \(\beta _{0}:=0\).

As S is a free \(R{-}\)module of rank m, there exists a one-to-one correspondence between \(S^{n}\) and the set \(R^{m\times n}\) of matrices of size \(m\times n\) with entries in R. Thus, the number of \(\boldsymbol{\textrm{a}}\) in \(S^{n}\) such that the shape of \({{\,\textrm{supp}\,}}(\boldsymbol{\textrm{a}})\) is \((\beta _{1},\ldots ,\beta _{\nu })\) is equal to the number of \(\boldsymbol{\textrm{A}}\) in \(R^{m\times n}\) of shape \((\beta _{1},\ldots ,\beta _{\nu })\). Thus, we can use (8) to find \(|B_{d_{g}}( \boldsymbol{\textrm{0}},r) |\) and \(|B_{d_{l}}( \boldsymbol{\textrm{0}},r)|\).

Calculation of \(|B_{d_{g}}( \boldsymbol{\textrm{0}},r) |\) . According to Proposition 3,

$$\boldsymbol{\textrm{a}}\in B_{d_{g}}( \boldsymbol{\textrm{0}},r) \Longleftrightarrow \mu _{R}({{\,\textrm{supp}\,}}(\boldsymbol{\textrm{a}})) \leqslant r \Longleftrightarrow \sum _{0\leqslant i\leqslant \nu -1} k_{i} \leqslant r$$

where \((k_{0},\ldots ,k_{\nu -1})\) is the type of \({{\,\textrm{supp}\,}}(\boldsymbol{\textrm{a}})\). Thus, to calculate \(|B_{d_{g}}( \boldsymbol{\textrm{0}},r) |\), the following steps can be used:

  1. 1.

    Find the set K of all types \((k_{0},\ldots ,k_{\nu -1})\) such that \(\sum _{1\leqslant i\leqslant \nu -1}k_{i}\leqslant r\);

  2. 2.

    Construct the set B of all the shapes \((\beta _{1},\ldots ,\beta _{\nu })\) associated to each type \((k_{0},\ldots ,k_{\nu -1})\) in K using (6);

  3. 3.

    Sum the number of matrices of shape \((\beta _{1},\ldots ,\beta _{\nu })\) for \((\beta _{1},\ldots ,\beta _{\nu })\) in B using (8).

Calculation of \(|B_{d_{l}}( \boldsymbol{\textrm{0}},r) |\) . According to Proposition 3,

$$\mathbf {a\in }B_{d_{l}}( \boldsymbol{\textrm{0}},r) \Longleftrightarrow \lambda _{R}({{\,\textrm{supp}\,}}(\boldsymbol{\textrm{a}}))\leqslant r \Longleftrightarrow \sum _{0\leqslant i\leqslant \nu -1}(\nu -i)k_{i}\leqslant r$$

where \((k_{0},\ldots ,k_{\nu -1})\) is the type of \({{\,\textrm{supp}\,}}(\boldsymbol{\textrm{a}})\). Thus, to calculate \(|B_{d_{l}}(\boldsymbol{\textrm{0}},r) |\), the following steps can be used:

  1. 1.

    Find the set K of all types \((k_{0},\ldots ,k_{\nu -1})\) such that \( \sum _{0\leqslant i\leqslant \nu -1}(\nu -i)k_{i}\leqslant r\);

  2. 2.

    Construct the set B of all shapes \((\beta _{1},\ldots ,\beta _{\nu })\) associated to each type

    \((k_{0},\ldots ,k_{\nu -1})\) in K using (6);

  3. 3.

    Sum the number of matrices of shape \((\beta _{1},\ldots ,\beta _{\nu })\) for \((\beta _{1},\ldots ,\beta _{\nu })\) in B using (8).

Example 5

Here we give more details on the calculation of \(|B_{d_{g}}( \boldsymbol{\textrm{0}},2) |\) and \(|B_{d_{l}}( \boldsymbol{\textrm{0}},2) |\) of Example 4. Recall that in this case, \(q=2\), \(\nu =2\), \(m=n=6\) and \(r=2\).

(i) The calculation of \(|B_{d_{g}}(\boldsymbol{\textrm{0}},2)|\).

The set of types \((k_{0},k_{1})\) such that \(k_{0}+k_{1}\leqslant 2\) is

$$K=\{(0,0),(0,1),(1,0),(1,1),(0,2),(2,0)\}.$$

The set of associated shapes is \(B=\{(0,0),(0,1),(1,1),(1,2),(0,2),(2,2)\}\).

For each \((\beta _{1},\beta _{2})\) in B we calculate the number of matrices of shape \((\beta _{1},\beta _{2})\) and sum them.

Shapes

Number of matrices

(0, 0)

1

(0, 1)

3969

(1, 1)

8128512

(1, 2)

7811500032

(0, 2)

2542806

(2, 2)

2666325344256

Total

2674147519576

Thus, \(|B_{d_{g}}(\boldsymbol{\textrm{0}},2)|=2674147519576\).

(ii) Computing \(|B_{d_{l}}( \boldsymbol{\textrm{0}},2)|\)

The set of type \((k_{0},k_{1})\) such that \(2k_{0}+k_{1}\leqslant 2\) is \(K=\{(0,0),(0,1),(1,0),(0,2)\}\).

The set of associated shape is \(B=\{(0,0),(0,1),(1,1),(0,2)\}\).

For each \((\beta _{1},\beta _{2})\) in B we calculate the number of matrices of shape \((\beta _{1},\beta _{2})\) and sum them.

Shapes

Number of matrices

(0, 0)

1

(0, 1)

3969

(1, 1)

8128512

(0, 2)

2542806

Total

10675288

Thus, \(|B_{d_{l}}( \boldsymbol{\textrm{0}},2)|=10675288\).

B Appendix

In this appendix, we prove as in [21, Remark 5.5.] that, if \(\textbf{e}\) is an element of \(S^{n}\) such that \(d_{l}(\textbf{e},\textbf{0})=r\), then the inverse of the probability \(p_{d_{l}}\) that \({{\,\textrm{supp}\,}}(\mathbf {e)}\) is contained in a free module F of rank u is given by \(1/p_{l}\approx q^{r\left( m-u\right) }\). Recall that \(d_{l}(\textbf{e},\textbf{0})=r\) if and only if \(\lambda _{R}({{\,\textrm{supp}\,}}(\mathbf {e))=}r\). Using the same notations as in Proposition 3 and in (6) we have

$$\begin{aligned} \lambda _{R}(M)=\sum _{1\leqslant i\leqslant s}(\nu -\alpha _{i})=\sum _{0\leqslant i\leqslant \nu -1}(\nu -i)k_{i}=\sum _{1\leqslant i\leqslant \nu }\beta _{i}. \end{aligned}$$

Hence, if M is a module of shape \((\beta _{1},\ldots ,\beta _{\nu })\), then \(\lambda _{R}(M)=r\) if and only if \(\sum _{1\leqslant i\leqslant \nu }\beta _{i}=r\). Thus, according to (7) the number of \(R{-}\)submodule M of length \(\lambda _{R}(M)=r\) contained in a free module F of rank u is

$$\begin{aligned} \varPsi (q,\nu ,r,u):=\sum \limits _{\underset{\beta _{1}+\cdots +\beta _{_{\nu }}=r}{0=\beta _{0}\leqslant \beta _{1}\leqslant \cdots \leqslant \beta _{\nu }} }\prod \limits _{i=1}^{\nu }q^{\beta _{i-1}(u-\beta _{i})}\left[ \begin{array}{c} u-\beta _{i-1} \\ \beta _{i}-\beta _{i-1} \end{array} \right] _{q}. \end{aligned}$$
(9)

Recall that from [25], we have

$$\begin{aligned} q^{k\left( n-k\right) }\leqslant \left[ \begin{array}{c} n \\ k\end{array} \right] _{q}\leqslant 4q^{k\left( n-k\right) }. \end{aligned}$$

Thus,

$$\begin{aligned} q^{\sum _{i=1}^{\nu }\beta _{i}\left( u-\beta _{i}\right) }\leqslant \prod \limits _{i=1}^{\nu }q^{\beta _{i-1}(u-\beta _{i})}\left[ \begin{array}{c} u-\beta _{i-1} \\ \beta _{i}-\beta _{i-1} \end{array}\right] _{q}\leqslant 4^{\nu }q^{\sum _{i=1}^{\nu }\beta _{i}\left( u-\beta _{i}\right) }. \end{aligned}$$
(10)

Using the fact that \(0\leqslant \beta _{1}\leqslant \cdots \leqslant \beta _{\nu }\) and \(\beta _{1}+\cdots +\beta _{_{\nu }}=r\), we obtain, \(\sum _{i=1}^{\nu }\beta _{i}\left( u-\beta _{i}\right) \leqslant \beta _{_{\nu }}(u-r)\leqslant r(u-r)\), since the optimal value of \(\beta _{_{\nu }}\) is r. Thus () is upper bounded by \(4^{\nu }q^{r(u-r)}\). Hence, an upper bound of (9) is \(4^{\nu }\left( {\begin{array}{c}r+\nu -1\\ \nu -1\end{array}}\right) q^{r(u-r)}\) where \(\ \left( {\begin{array}{c}r+\nu -1\\ \nu -1\end{array}}\right) \) is a binomial coefficient which is equal to the number of \(\nu {-}\)tuple \((\beta _{1},\ldots ,\beta _{\nu })\) such that \(\beta _{1}+\cdots +\beta _{_{\nu }}=r\).

Among the \(\nu {-}\)tuples \((\beta _{1},\ldots ,\beta _{\nu })\) such that \(\beta _{1}+\cdots +\beta _{_{\nu }}=r\), one has the \(\nu {-}\)tuple \((0,\ldots ,0,r)\). Thus, (10) implies that (9) is lower bounded by \(q^{r(u-r)}\). Therefore,

$$\begin{aligned} q^{r(u-r)}\leqslant \varPsi (q,\nu ,r,u)\leqslant 4^{\nu }\left( {\begin{array}{c}r+\nu -1\\ \nu -1\end{array}}\right) q^{r(u-r)}. \end{aligned}$$
(11)

The probability \(p_{d_{l}}\) that \({{\,\textrm{supp}\,}}(\mathbf {e)}\) of length r is contained in a free module F of rank u is equal to the number of submodules of S of length r in a free submodule of S of rank u divided by the number of submodules of S of length r, that is to say,

$$\begin{aligned} p_{d_{l}}=\varPsi (q,\nu ,r,u)/\varPsi (q,\nu ,r,m). \end{aligned}$$

Using (11), we obtain \(p_{d_{l}}\) \(\approx q^{r(u-r)}/q^{r(m-r)}\) \(=q^{r(u-m)}\). So,

$$\begin{aligned} 1/p_{d_{l}}\approx q^{r(m-u)}. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamche, H.T., Kalachi, H.T. (2024). On the Generalizations of the Rank Metric over Finite Chain Rings. In: Vaudenay, S., Petit, C. (eds) Progress in Cryptology - AFRICACRYPT 2024. AFRICACRYPT 2024. Lecture Notes in Computer Science, vol 14861. Springer, Cham. https://doi.org/10.1007/978-3-031-64381-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64381-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64380-4

  • Online ISBN: 978-3-031-64381-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics