Abstract
Neural networks in safety-critical applications face increasing security and safety concerns due to their susceptibility to little disturbance. In this paper, we propose DeepCDCL, a novel neural network verification framework based on the Conflict-Driven Clause Learning (CDCL) algorithm. We introduce an asynchronous clause learning and management structure, reducing redundant time consumption compared to the direct application of the CDCL framework. Furthermore, we also provide a detailed evaluation of the performance of our approach on the ACAS Xu and MNIST datasets, showing a significant speed-up in most verification problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction: a synergistic approach for analyzing neural network robustness. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 731–744 (2019)
Ashok, P., Hashemi, V., Kretínský, J., Mohr, S.: DeepAbstract: neural network abstraction for accelerating verification. In: Hung, D.V., Sokolsky, O. (eds.) Automated Technology for Verification and Analysis - 18th International Symposium, ATVA 2020, Hanoi, Vietnam, 19–23 October 2020, Proceedings, LNCS, vol. 12302, pp. 92–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_5
Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.: Measuring neural net robustness with constraints. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Bertsimas, D., Tsitsiklis, J.N.: Introduction to linear optimization, vol. 6. Athena scientific Belmont, MA (1997)
Boopathy, A., Weng, T., Chen, P., Liu, S., Daniel, L.: Cnn-cert: an efficient framework for certifying robustness of convolutional neural networks. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. pp. 3240–3247. AAAI Press (2019).https://doi.org/10.1609/aaai.v33i01.33013240
Brix, C., Bak, S., Liu, C., Johnson, T.T.: The fourth international verification of neural networks competition (vnn-comp 2023): summary and results (2023)
Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in linear programs. INFORMS J. Comput. 3, 157–168 (1991). https://api.semanticscholar.org/CorpusID:207225476
Deng, L.: The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)
Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_19
Ferrari, C., Müller, M.N., Jovanovic, N., Vechev, M.T.: Complete verification via multi-neuron relaxation guided branch-and-bound. In: The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, 25–29 April 2022. OpenReview.net (2022). https://openreview.net/forum?id=l_amHf1oaK
Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.: Ai2: Safety and robustness certification of neural networks with abstract interpretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2018)
Gopinath, D., Katz, G., Păsăreanu, C.S., Barrett, C.: DeepSafe: a data-driven approach for assessing robustness of neural networks. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_1
Gowal, S., et al.: Scalable verified training for provably robust image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4842–4851 (2019)
Gurobi Optimization, L.: Gurobi optimizer reference manual (2021). http://www.gurobi.com
Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1
Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression for aircraft collision avoidance systems. J. Guid. Control. Dyn. 42(3), 598–608 (2019)
Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy compression for aircraft collision avoidance systems. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pp. 1–10. IEEE (2016)
Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5
Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P., Thakoor, S., Wu, H., Zeljić, A., Dill, D.L., Kochenderfer, M.J., Barrett, C.: The marabou framework for verification and analysis of deep neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26
The marabou framework for verification and analysis of deep neural networks. In: CAV 2019. LNCS, vol. 11561, pp. 443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26
Khedr, H., Ferlez, J., Shoukry, Y.: PEREGRiNN: penalized-relaxation greedy neural network verifier. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 287–300. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_13
Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural networks with symbolic propagation: towards higher precision and faster verification. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 296–319. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32304-2_15
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR 2018. OpenReview.net, Vancouver, BC, Canada (2018)
Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning sat solvers. In: Handbook of Satisfiability, pp. 133–182. IOS press (2021)
Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for provably robust neural networks. In: International Conference on Machine Learning, pp. 3578–3586. PMLR (2018)
de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24
Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.: PRIMA: general and precise neural network certification via scalable convex hull approximations. Proc. ACM Program. Lang. 6(POPL), 1–33 (2022)
Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract davis–putnam–logemann–loveland procedure to dpll(T). J. ACM 53(6), 937–977 (2006). https://doi.org/10.1145/1217856.1217859
Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_24
Sebastiani, R.: Lazy satisability modulo theories. J. Satisf. Boolean Model. Comput. 3(3-4), 141–224 (2007). https://doi.org/10.3233/SAT190034
Singh, G., Ganvir, R., Püschel, M., Vechev, M.: Beyond the single neuron convex barrier for neural network certification. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective robustness certification. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Singh, G., Gehr, T., Püschel, M., Vechev, M.: Boosting robustness certification of neural networks. In: International conference on learning representations (2018)
Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying neural networks. PACMPL 3(POPL), 41:1–41:30 (2019)
Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with mixed integer programming. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). https://openreview.net/forum?id=HyGIdiRqtm
Tran, H.-D., Yang, X., Manzanas Lopez, D., Musau, P., Nguyen, L.V., Xiang, W., Bak, S., Johnson, T.T.: NNV: the neural network verification tool for deep neural networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 3–17. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_1
Urmson, C., Whittaker, W.: Self-driving cars and the urban challenge. IEEE Intell. Syst. 23(2), 66–68 (2008)
Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis of neural networks. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. In: 27th USENIX Security Symposium (USENIX Security 18), pp. 1599–1614 (2018)
Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter, J.Z.: Beta-CROWN: efficient bound propagation with per-neuron split constraints for neural network robustness verification. Adv. Neural. Inf. Process. Syst. 34, 29909–29921 (2021)
Weng, L., et al.: Towards fast computation of certified robustness for ReLu networks. In: International Conference on Machine Learning, pp. 5276–5285. PMLR (2018)
Weng, T., et al.: Evaluating the robustness of neural networks: An extreme value theory approach. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30–May 3, 2018, Conference Track Proceedings. OpenReview.net (2018). https://openreview.net/forum?id=BkUHlMZ0b
Xu, K., et al.: Fast and complete: enabling complete neural network verification with rapid and massively parallel incomplete verifiers. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021. OpenReview.net (2021). https://openreview.net/forum?id=nVZtXBI6LNn
Yang, P., et al.: Improving neural network verification through spurious region guided refinement. In: TACAS 2021. LNCS, vol. 12651, pp. 389–408. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_21
Yin, B., Chen, L., Liu, J., Wang, J.: Efficient complete verification of neural networks via layerwised splitting and refinement. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(11), 3898–3909 (2022). https://doi.org/10.1109/TCAD.2022.3197534
Zhang, H., et al.: Towards stable and efficient training of verifiably robust neural networks. arXiv preprint arXiv:1906.06316 (2019)
Zhang, H., et al.: General cutting planes for bound-propagation-based neural network verification. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/0b06c8673ebb453e5e468f7743d8f54e-Abstract-Conference.html
Acknowledgement
This work was partially supported by CAS Project for Young Scientists in Basic Research, Grant No. YSBR-040, ISCAS New Cultivation Project ISCAS-PYFX-202201, and ISCAS Basic Research ISCAS-JCZD-202302.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, Z., Yang, P., Zhang, L., Huang, X. (2024). DeepCDCL: A CDCL-based Neural Network Verification Framework. In: Chin, WN., Xu, Z. (eds) Theoretical Aspects of Software Engineering. TASE 2024. Lecture Notes in Computer Science, vol 14777. Springer, Cham. https://doi.org/10.1007/978-3-031-64626-3_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-64626-3_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-64625-6
Online ISBN: 978-3-031-64626-3
eBook Packages: Computer ScienceComputer Science (R0)