Abstract
The formal verification of deep neural networks (DNNs) guarantees their robustness. However, DNNs deployed in real-world applications frequently undergo adjustments due to, for instance, quantization and model repair, necessitating the repetition of computationally expensive formal verification. To efficiently verify the robustness of such adjusted DNNs, incremental techniques for DNN verification are proposed recently. These techniques use the information obtained from the verification of original networks to expedite the verification of their adjusted counterparts. In particular, the state-of-the-art incremental technique based on the Branch-and-Bound method exploits branching information from verifying original DNNs, to efficiently generate subproblems for verifying the adjusted counterparts. This paper goes beyond this idea. When verifying adjusted DNNs, we prioritize checking subproblems that falsify the robustness of the original ones, with the expectation of prompt falsification. Furthermore, we collect information from the Bound processes while verifying original DNNs, then utilize it for more efficient Bound processes when verifying the adjusted networks. We propose a DNN incremental verification framework I-IVAN and realize it for evaluation. It is compared against IVAN, the state-of-the-art DNN verification tool with incremental techniques, on networks trained by datasets MNIST and CIFAR-10. The experimental results show that I-IVAN is much more efficient than IVAN within 7.71 times faster than IVAN at most.
This work is partially supported by the Natural Science Foundation of Guangdong Province (Grant No. 2022A1515011458).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gurobi optimizer reference manual (2008). http://www.gurobi.com
Ivan (2023). https://github.com/uiuc-focal-lab/IVAN
Bak, S., Liu, C., Johnson, T.T.: The second international verification of neural networks competition (VNN-COMP 2021): summary and results. CoRR abs/2109.00498 (2021). https://arxiv.org/abs/2109.00498
Balunovic, M., Vechev, M.: Adversarial training and provable defenses: Bridging the gap. In: International Conference on Learning Representations (2019)
Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for efficient regression verification. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, pp. 389–399 (2013)
Borgonovo, E., Buzzard, G.T., Wendell, R.E.: A global tolerance approach to sensitivity analysis in linear programming. Eur. J. Oper. Res. 267(1), 321–337 (2018)
Bunel, R., Mudigonda, P., Turkaslan, I., Torr, P., Lu, J., Kohli, P.: Branch and bound for piecewise linear neural network verification. J. Mach. Learn. Res. 21(2020), 1–39 (2020)
Eén, N., Sörensson, N.: Temporal induction by incremental sat solving. Electron. Notes Theor. Comput. Sci. 89(4), 543–560 (2003)
Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_19
Ferrari, C., Muller, M.N., Jovanovic, N., Vechev, M.: Complete verification via multi-neuron relaxation guided branch-and-bound. arXiv preprint arXiv:2205.00263 (2022)
Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W., Keutzer, K.: A survey of quantization methods for efficient neural network inference. arXiv preprint arXiv:2103.13630 (2021)
Henriksen, P., Lomuscio, A.: Deepsplit: an efficient splitting method for neural network verification via indirect effect analysis. In: IJCAI, pp. 2549–2555 (2021)
Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks: verification, testing, adversarial attack and defence, and interpretability. Comput. Sci. Rev. 37, 100270 (2020). https://doi.org/10.1016/j.cosrev.2020.100270
Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1
Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression for aircraft collision avoidance systems. J. Guid. Control. Dyn. 42(3), 598–608 (2019)
Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5
Kaufmann, E., Loquercio, A., Ranftl, R., Müller, M., Koltun, V., Scaramuzza, D.: Deep drone acrobatics. arXiv preprint arXiv:2006.05768 (2020)
Laurel, J., Yang, R., Sehgal, A., Ugare, S., Misailovic, S.: Statheros: compiler for efficient low-precision probabilistic programming. In: 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 787–792. IEEE (2021)
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)
Morgulis, N., Kreines, A., Mendelowitz, S., Weisglass, Y.: Fooling a real car with adversarial traffic signs. CoRR abs/1907.00374 (2019). http://arxiv.org/abs/1907.00374
O’Hearn, P.W.: Continuous reasoning: scaling the impact of formal methods. In: Proceedings of the 33rd annual ACM/IEEE Symposium on Logic in Computer Science, pp. 13–25 (2018)
Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective robustness certification. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 31. Curran Associates, Inc. (2018). https://proceedings.neurips.cc/paper/2018/file/f2f446980d8e971ef3da97af089481c3-Paper.pdf
Sotoudeh, M., Thakur, A.V.: Computing linear restrictions of neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Stein, B., Chang, B.Y.E., Sridharan, M.: Demanded abstract interpretation. In: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, pp. 282–295 (2021)
Tang, X., Zheng, Y., Liu, J.: Boosting multi-neuron convex relaxation for neural network verification. In: Hermenegildo, M.V., Morales, J.F. (eds.) Static Analysis, SAS 2023, LNCS, vol. 14284, pp. 540–563. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44245-2_23
Ugare, S., Banerjee, D., Misailovic, S., Singh, G.: Incremental verification of neural networks. Proc. ACM Program.Lang. 7(PLDI), 1920–1945 (2023)
Visser, W., Geldenhuys, J., Dwyer, M.B.: Green: reducing, reusing and recycling constraints in program analysis. In: Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, pp. 1–11 (2012)
Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. In: Enck, W., Felt, A.P. (eds.) 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, 15–17 August 2018, pp. 1599–1614. USENIX Association (2018). https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter, J.Z.: Beta-crown: efficient bound propagation with per-neuron split constraints for neural network robustness verification. Adv. Neural. Inf. Process. Syst. 34, 29909–29921 (2021)
Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big data 3(1), 1–40 (2016)
Yang, G., Dwyer, M.B., Rothermel, G.: Regression model checking. In: 2009 IEEE International Conference on Software Maintenance, pp. 115–124. IEEE (2009)
Yang, P., Chi, Z., Liu, Z., Zhao, M., Huang, C.C., Cai, S., Zhang, L.: Incremental satisfiability modulo theory for verification of deep neural networks. arXiv preprint arXiv:2302.06455 (2023)
Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: survey, landscapes and horizons. IEEE Trans. Software Eng. 48(2), 1–36 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tang, X. (2024). Improved Incremental Verification for Neural Networks. In: Chin, WN., Xu, Z. (eds) Theoretical Aspects of Software Engineering. TASE 2024. Lecture Notes in Computer Science, vol 14777. Springer, Cham. https://doi.org/10.1007/978-3-031-64626-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-64626-3_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-64625-6
Online ISBN: 978-3-031-64626-3
eBook Packages: Computer ScienceComputer Science (R0)