Skip to main content

Improved Incremental Verification for Neural Networks

  • Conference paper
  • First Online:
Theoretical Aspects of Software Engineering (TASE 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14777))

Included in the following conference series:

  • 506 Accesses

Abstract

The formal verification of deep neural networks (DNNs) guarantees their robustness. However, DNNs deployed in real-world applications frequently undergo adjustments due to, for instance, quantization and model repair, necessitating the repetition of computationally expensive formal verification. To efficiently verify the robustness of such adjusted DNNs, incremental techniques for DNN verification are proposed recently. These techniques use the information obtained from the verification of original networks to expedite the verification of their adjusted counterparts. In particular, the state-of-the-art incremental technique based on the Branch-and-Bound method exploits branching information from verifying original DNNs, to efficiently generate subproblems for verifying the adjusted counterparts. This paper goes beyond this idea. When verifying adjusted DNNs, we prioritize checking subproblems that falsify the robustness of the original ones, with the expectation of prompt falsification. Furthermore, we collect information from the Bound processes while verifying original DNNs, then utilize it for more efficient Bound processes when verifying the adjusted networks. We propose a DNN incremental verification framework I-IVAN and realize it for evaluation. It is compared against IVAN, the state-of-the-art DNN verification tool with incremental techniques, on networks trained by datasets MNIST and CIFAR-10. The experimental results show that I-IVAN is much more efficient than IVAN within 7.71 times faster than IVAN at most.

This work is partially supported by the Natural Science Foundation of Guangdong Province (Grant No. 2022A1515011458).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gurobi optimizer reference manual (2008). http://www.gurobi.com

  2. Ivan (2023). https://github.com/uiuc-focal-lab/IVAN

  3. Bak, S., Liu, C., Johnson, T.T.: The second international verification of neural networks competition (VNN-COMP 2021): summary and results. CoRR abs/2109.00498 (2021). https://arxiv.org/abs/2109.00498

  4. Balunovic, M., Vechev, M.: Adversarial training and provable defenses: Bridging the gap. In: International Conference on Learning Representations (2019)

    Google Scholar 

  5. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for efficient regression verification. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, pp. 389–399 (2013)

    Google Scholar 

  6. Borgonovo, E., Buzzard, G.T., Wendell, R.E.: A global tolerance approach to sensitivity analysis in linear programming. Eur. J. Oper. Res. 267(1), 321–337 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bunel, R., Mudigonda, P., Turkaslan, I., Torr, P., Lu, J., Kohli, P.: Branch and bound for piecewise linear neural network verification. J. Mach. Learn. Res. 21(2020), 1–39 (2020)

    Google Scholar 

  8. Eén, N., Sörensson, N.: Temporal induction by incremental sat solving. Electron. Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

    Article  MATH  Google Scholar 

  9. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_19

    Chapter  MATH  Google Scholar 

  10. Ferrari, C., Muller, M.N., Jovanovic, N., Vechev, M.: Complete verification via multi-neuron relaxation guided branch-and-bound. arXiv preprint arXiv:2205.00263 (2022)

  11. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W., Keutzer, K.: A survey of quantization methods for efficient neural network inference. arXiv preprint arXiv:2103.13630 (2021)

  12. Henriksen, P., Lomuscio, A.: Deepsplit: an efficient splitting method for neural network verification via indirect effect analysis. In: IJCAI, pp. 2549–2555 (2021)

    Google Scholar 

  13. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks: verification, testing, adversarial attack and defence, and interpretability. Comput. Sci. Rev. 37, 100270 (2020). https://doi.org/10.1016/j.cosrev.2020.100270

  14. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

    Chapter  MATH  Google Scholar 

  15. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression for aircraft collision avoidance systems. J. Guid. Control. Dyn. 42(3), 598–608 (2019)

    Article  MATH  Google Scholar 

  16. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5

    Chapter  MATH  Google Scholar 

  17. Kaufmann, E., Loquercio, A., Ranftl, R., Müller, M., Koltun, V., Scaramuzza, D.: Deep drone acrobatics. arXiv preprint arXiv:2006.05768 (2020)

  18. Laurel, J., Yang, R., Sehgal, A., Ugare, S., Misailovic, S.: Statheros: compiler for efficient low-precision probabilistic programming. In: 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 787–792. IEEE (2021)

    Google Scholar 

  19. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  20. Morgulis, N., Kreines, A., Mendelowitz, S., Weisglass, Y.: Fooling a real car with adversarial traffic signs. CoRR abs/1907.00374 (2019). http://arxiv.org/abs/1907.00374

  21. O’Hearn, P.W.: Continuous reasoning: scaling the impact of formal methods. In: Proceedings of the 33rd annual ACM/IEEE Symposium on Logic in Computer Science, pp. 13–25 (2018)

    Google Scholar 

  22. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective robustness certification. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 31. Curran Associates, Inc. (2018). https://proceedings.neurips.cc/paper/2018/file/f2f446980d8e971ef3da97af089481c3-Paper.pdf

  23. Sotoudeh, M., Thakur, A.V.: Computing linear restrictions of neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  24. Stein, B., Chang, B.Y.E., Sridharan, M.: Demanded abstract interpretation. In: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, pp. 282–295 (2021)

    Google Scholar 

  25. Tang, X., Zheng, Y., Liu, J.: Boosting multi-neuron convex relaxation for neural network verification. In: Hermenegildo, M.V., Morales, J.F. (eds.) Static Analysis, SAS 2023, LNCS, vol. 14284, pp. 540–563. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44245-2_23

  26. Ugare, S., Banerjee, D., Misailovic, S., Singh, G.: Incremental verification of neural networks. Proc. ACM Program.Lang. 7(PLDI), 1920–1945 (2023)

    Google Scholar 

  27. Visser, W., Geldenhuys, J., Dwyer, M.B.: Green: reducing, reusing and recycling constraints in program analysis. In: Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, pp. 1–11 (2012)

    Google Scholar 

  28. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. In: Enck, W., Felt, A.P. (eds.) 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, 15–17 August 2018, pp. 1599–1614. USENIX Association (2018). https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi

  29. Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter, J.Z.: Beta-crown: efficient bound propagation with per-neuron split constraints for neural network robustness verification. Adv. Neural. Inf. Process. Syst. 34, 29909–29921 (2021)

    Google Scholar 

  30. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big data 3(1), 1–40 (2016)

    Article  MATH  Google Scholar 

  31. Yang, G., Dwyer, M.B., Rothermel, G.: Regression model checking. In: 2009 IEEE International Conference on Software Maintenance, pp. 115–124. IEEE (2009)

    Google Scholar 

  32. Yang, P., Chi, Z., Liu, Z., Zhao, M., Huang, C.C., Cai, S., Zhang, L.: Incremental satisfiability modulo theory for verification of deep neural networks. arXiv preprint arXiv:2302.06455 (2023)

  33. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: survey, landscapes and horizons. IEEE Trans. Software Eng. 48(2), 1–36 (2022)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuezhou Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, X. (2024). Improved Incremental Verification for Neural Networks. In: Chin, WN., Xu, Z. (eds) Theoretical Aspects of Software Engineering. TASE 2024. Lecture Notes in Computer Science, vol 14777. Springer, Cham. https://doi.org/10.1007/978-3-031-64626-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64626-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64625-6

  • Online ISBN: 978-3-031-64626-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics