Abstract
Artificial intelligence assisted mathematical proof has become a highly focused area nowadays. One key problem in this field is to generate formal mathematical proofs from natural language proofs. Due to historical reasons, the formal proof languages adopted by traditional theorem provers were not intended to represent natural language proofs. Therefore, they are not well-suited for the aforementioned tasks and proof-checking work for educational purposes. In this paper, we design a proof language and its corresponding abstract syntax tree and implement a proof checking tool for it. This language can be easily converted from natural language, thus providing a rich corpus of formal proof. Additionally, it supports the handling of issues in informal proofs through static analysis, and enhances the expressive power of the language by introducing the structure of partial proofs. This design combines the expressiveness of natural language and the accuracy of formal language, resulting in an improved mathematical proof language.
L. Xie and Z. Hui—contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Appel, K.I., Haken, W.: Every Planar Map is Four Colorable, vol. 98. American Mathematical Soc. (1989)
Barras, B., et al.: The coq proof assistant reference manual. INRIA, version 6(11) (1999)
Bauer, G., Wenzel, M.: Calculational reasoning revisited an Isabelle/Isar experience. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 75–90. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44755-5_7
Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development: Coq’Art The Calculus of Inductive Constructions, 1st (edn.) Springer, Incorporated (2010)
Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – a functional language with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_6
Carl, M., Krapf, R.: Diproche–ein automatisierter tutor für den einstieg ins beweisen. Digitale Kompetenzen und Curriculare Konsequenzen, p. 43 (2020)
Carter, N.C., Monks, K.G.: Using the proof-checking word processor lurch to teach proof-writing (2014)
de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24
Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNAI, vol. 1955, pp. 85–95. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44404-1_7
Donnelly, C.: Bison the YACC-compatible parser generator. Technical report, Free Software Foundation (1988)
Gonthier, G., et al.: Formal proof-the four-color theorem. Notices AMS 55(11), 1382–1393 (2008)
Hendrycks, D., et al.: Measuring mathematical problem solving with the math dataset (2021)
Jiang, A.Q., et al.: Draft, sketch, and prove: Guiding formal theorem provers with informal proofs. arXiv preprint arXiv:2210.12283 (2022)
Lample, G., et al.: Hypertree proof search for neural theorem proving. In: Advances in Neural Information Processing Systems, vol. 35, pp. 26337–26349 (2022)
Levine, J.: Flex & Bison: Text Processing Tools. O’Reilly Media, Inc. (2009)
Paulson, L.C.: Isabelle: A Generic Theorem Prover. Springer, Berlin (1994)
Polu, S., Sutskever, I.: Generative language modeling for automated theorem proving. arXiv preprint arXiv:2009.03393 (2020)
Wemmenhove, J., Beurskens, T., McCarren, S., Moraal, J., Tuin, D., Portegies, J.: Waterproof: educational software for learning how to write mathematical proofs. arXiv preprint arXiv:2211.13513 (2022)
Wenzel, M.: Isar - a generic interpretative approach to readable formal proof documents. In: International Conference on Theorem Proving in Higher Order Logics (1999)
Wu, Y., et al.: Autoformalization with large language models. Advances in Neural Information Processing Systems, vol. 35, pp. 32353–32368 (2022)
Xie, L., Hui, Z., Cao, Q.: A natural formalized proof language (long version). arXiv preprint arXiv:2405.07973 (2024)
Acknowledgements
This material is based upon work supported by NSF China 92370201.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xie, L., Hui, Z., Cao, Q. (2024). A Natural Formalized Proof Language. In: Chin, WN., Xu, Z. (eds) Theoretical Aspects of Software Engineering. TASE 2024. Lecture Notes in Computer Science, vol 14777. Springer, Cham. https://doi.org/10.1007/978-3-031-64626-3_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-64626-3_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-64625-6
Online ISBN: 978-3-031-64626-3
eBook Packages: Computer ScienceComputer Science (R0)