Skip to main content

Exploring DNA Methylation Patterns in the Core Genome of Klebsiella pneumoniae

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2024)

Abstract

In recent years, sequencing has become easily accessible and widespread, revolutionizing our ability to study complex genetic information. Thus, it is possible to analyze complex bacterial populations and investigate relationships between individual strains. Methods such as core genome multilocus sequence typing (cgMLST) are used in routine clinical practice to characterize bacterial isolates, track the spread of infectious diseases, and monitor outbreaks. However, the limitation lies in distinguishing closely related bacterial strains, which differ only in several bases. Therefore, here, we present the core genome methylome analysis utilizing nanopore sequencing. We demonstrate that epigenetic information contained within bacterial strains allows us to differentiate populations similarly to cgMLST. Moreover, the proposed unique combination of cgMLST with core genome methylome can even increase the discriminatory power between closely similar isolates, overcoming the constraints of cgMLST. Combining genomic and epigenomic information can provide better insight into bacterial strains’ evolution, transmission patterns and pathogenicity study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggelen, H.V., Kolde, R., Chamarthi, H., Loving, J., Fan, Y., Fallon III, J.T., et al.: A core genome approach that enables prospective and dynamic monitoring of infectious outbreaks. Sci. Rep. 9(1), 7808 (2019). https://doi.org/10.1038/s41598-019-44189-0

  2. Bezdicek, M., et al.: Application of mini-MLST and whole genome sequencing in low diversity hospital extended-spectrum beta-lactamase producing Klebsiella pneumoniae population. PLoS One 14(8), e0221187 (2019). https://doi.org/10.1371/journal.pone.0221187

  3. Breiling, A., Lyko, F.: Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin. 8(1), 24 (2015). https://doi.org/10.1186/s13072-015-0016-6

  4. Casadesus, J., Low, D.: Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70(3), 830–56 (2006). https://doi.org/10.1128/mmbr.00016-06

  5. Chen, H., Tao, S., Li, N., Wang, F., Wang, L., Tang, Y., et al.: Functional comparison of anti-restriction and anti-methylation activities of ArdA, KlcA, and KlcAHS from Klebsiella pneumoniae. Front. Cell Infect. Microbiol. 12, 1-10 (2022). https://doi.org/10.3389/fcimb.2022.916547

  6. Chung, M., Munro, J.B., Tettelin, H., Dunning Hotopp, J.C.: Using core genome alignments to assign bacterial species. MSystems 3(6), 1–21 (2018). https://doi.org/10.1128/msystems.00236-18

  7. Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W.: GenBank. Nucleic Acids Res. 44(D1), D67–D72 (2016). https://doi.org/10.1093/nar/gkv1276

  8. Costa, S.S., Guimarães, L.C., Silva, A., Soares, S.C., Baraúna, R.A.: First steps in the analysis of prokaryotic pan-genomes. Bioinform. Biol. Insights 14, 117793222093806 (2020). https://doi.org/10.1177/1177932220938064

  9. Effah, C.Y., Sun, T., Liu, S., Wu, Y.: Klebsiella pneumoniae: an increasing threat to public health. Ann. Clin. Microbiol. Antimicrob. 19(1), 1 (2020). https://doi.org/10.1186/s12941-019-0343-8

  10. Fu, J., Zhang, J., Yang, L., Ding, N., Yue, L., Zhang, X., et al.: Precision methylome and in vivo methylation kinetics characterization of Klebsiella pneumoniae. Genomics Proteomics Bioinform. 20(2), 418–34 (2022). https://doi.org/10.1016/j.gpb.2021.04.002

  11. Ghosh, D., Pal, A., Mohapatra, S., Raj, S., Vivekanandan, P.: Distinct epigenetic signatures of classical and hypervirulent Klebsiella pneumoniae. MSphere 9(1), 1–9 (2024). https://doi.org/10.1128/msphere.00464-23

  12. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference, (SciPy), pp. 11–5, Pasadena, CA, USA (2008)

    Google Scholar 

  13. Jackson, R.W., Vinatzer, B., Arnold, D.L., Dorus, S., Murillo, J.: The influence of the accessory genome on bacterial pathogen evolution. Mob. Genet. Elements 1(1), 55-65 (2011). https://doi.org/10.4161/mge.1.1.16432

  14. Jünemann, S., Sedlazeck, F.J., Prior, K., Albersmeier, A., John, U., Kalinowski, J., et al.: Updating benchtop sequencing performance comparison. Nat. Biotechnol. 31(4), 294-296 (2013). https://doi.org/10.1038/nbt.2522

  15. Kolmogorov, M., Yuan, J., Lin, Y., Pevzner, P.A.: Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37(5), 540–6 (2019). https://doi.org/10.1038/s41587-019-0072-8

  16. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14), 1754–60 (2009). https://doi.org/10.1093/bioinformatics/btp324

  17. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al.: The sequence alignment/map format and SAMtools. Bioinformatics 25(16), 2078–9 (2009). https://doi.org/10.1093/bioinformatics/btp352

  18. Liu, Y., Rosikiewicz, W., Pan, Z., Jillette, N., Wang, P., Taghbalout, A., et al.: DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation. Genome Biol. 22(1) (2021). https://doi.org/10.1186/s13059-021-02510-z

  19. Ni, P., Huang, N., Zhang, Z., Wang, D.P., Liang, F., Miao, Y., et al.: DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics 35(22), 4586–95 (2019). https://doi.org/10.1093/bioinformatics/btz276

  20. Nielsen, T.K., Forero-Junco, L.M., Kot, W., Moineau, S., Hansen, L.H., Riber, L.: Detection of nucleotide modifications in bacteria and bacteriophages: strengths and limitations of current technologies and software. Mol. Ecol. 32(6), 1236–47 (2023). https://doi.org/10.1111/mec.16679

  21. Nykrynova, M., Bezdicek, M., Lengerova, M., Skutkova, H. :Bacterial phenotype prediction based on methylation site profiles. In: 2023 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6. IEEE (2023). https://doi.org/10.1109/CIBCB56990.2023.10264900

  22. Rosconi, F., Rudmann, E., Li, J., Surujon, D., Anthony, J., Frank, M., et al.: A bacterial pan-genome makes gene essentiality strain-dependent and evolvable. Nat. Microbiol. 7(10), 1580–92 (2022). https://doi.org/10.1038/s41564-022-01208-7

  23. Schürchm, A.C., Arredondo-Alonso, S., Willems, R.J.L., Goering, R.V.: Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin. Microbiol. Infect. 24(4), 350–4 (2018). https://doi.org/10.1016/j.cmi.2017.12.016

  24. Simpson, J.T., Workman, R.E., Zuzarte, P.C., David, M., Dursi, L.J., Timp, W.: Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14(4), 407–10 (2017). https://doi.org/10.1038/nmeth.4184

  25. Spadar, A., Perdigão, J., Phelan, J., Charleston, J., Modesto, A., Elias, R., et al.: Methylation analysis of Klebsiella pneumoniae from Portuguese hospitals. Sci. Rep. 11(1), 6491 (2021). https://doi.org/10.1038/s41598-021-85724-2

  26. Stoiber, M.H., Quick, J., Egan, R., Lee, J.E., Celniker, S.E., Neely, R., et al.: De novo identification of DNA modifications enabled by genome-guided nanopore signal processing. In: bioRxiv, pp:094672 (2016). https://doi.org/10.1101/094672

  27. Vaser, R., Sović, I., Nagarajan, N., Šikić, M.: Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27(5), 737–46 (2017). https://doi.org/10.1101/gr.214270.116

  28. Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., et al.: Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 9(11) (2014). https://doi.org/10.1371/journal.pone.0112963

  29. Wu, K.M., Li, N.H., Yan, J.J., Tsao, N., Liao, T.L., Tsai, H.C., et al.: Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol. 191(14), 4492–501 (2009). https://doi.org/10.1128/JB.00315-09

  30. Zhao, L.Y., Song, J., Liu, Y., Song, C.X., Yi, C.: Mapping the epigenetic modifications of DNA and RNA. Protein Cell 11(11), 792–808 (2020). https://doi.org/10.1007/s13238-020-00733-7

Download references

Acknowledgments.

This work was supported by a grant project from the Czech Science Foundation [GA23-05845S].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marketa Nykrynova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nykrynova, M., Bezdicek, M., Lengerova, M., Vitkova, H. (2024). Exploring DNA Methylation Patterns in the Core Genome of Klebsiella pneumoniae. In: Rojas, I., Ortuño, F., Rojas, F., Herrera, L.J., Valenzuela, O. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2024. Lecture Notes in Computer Science(), vol 14849. Springer, Cham. https://doi.org/10.1007/978-3-031-64636-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64636-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64635-5

  • Online ISBN: 978-3-031-64636-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics