Abstract
In recent years, sequencing has become easily accessible and widespread, revolutionizing our ability to study complex genetic information. Thus, it is possible to analyze complex bacterial populations and investigate relationships between individual strains. Methods such as core genome multilocus sequence typing (cgMLST) are used in routine clinical practice to characterize bacterial isolates, track the spread of infectious diseases, and monitor outbreaks. However, the limitation lies in distinguishing closely related bacterial strains, which differ only in several bases. Therefore, here, we present the core genome methylome analysis utilizing nanopore sequencing. We demonstrate that epigenetic information contained within bacterial strains allows us to differentiate populations similarly to cgMLST. Moreover, the proposed unique combination of cgMLST with core genome methylome can even increase the discriminatory power between closely similar isolates, overcoming the constraints of cgMLST. Combining genomic and epigenomic information can provide better insight into bacterial strains’ evolution, transmission patterns and pathogenicity study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggelen, H.V., Kolde, R., Chamarthi, H., Loving, J., Fan, Y., Fallon III, J.T., et al.: A core genome approach that enables prospective and dynamic monitoring of infectious outbreaks. Sci. Rep. 9(1), 7808 (2019). https://doi.org/10.1038/s41598-019-44189-0
Bezdicek, M., et al.: Application of mini-MLST and whole genome sequencing in low diversity hospital extended-spectrum beta-lactamase producing Klebsiella pneumoniae population. PLoS One 14(8), e0221187 (2019). https://doi.org/10.1371/journal.pone.0221187
Breiling, A., Lyko, F.: Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin. 8(1), 24 (2015). https://doi.org/10.1186/s13072-015-0016-6
Casadesus, J., Low, D.: Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70(3), 830–56 (2006). https://doi.org/10.1128/mmbr.00016-06
Chen, H., Tao, S., Li, N., Wang, F., Wang, L., Tang, Y., et al.: Functional comparison of anti-restriction and anti-methylation activities of ArdA, KlcA, and KlcAHS from Klebsiella pneumoniae. Front. Cell Infect. Microbiol. 12, 1-10 (2022). https://doi.org/10.3389/fcimb.2022.916547
Chung, M., Munro, J.B., Tettelin, H., Dunning Hotopp, J.C.: Using core genome alignments to assign bacterial species. MSystems 3(6), 1–21 (2018). https://doi.org/10.1128/msystems.00236-18
Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W.: GenBank. Nucleic Acids Res. 44(D1), D67–D72 (2016). https://doi.org/10.1093/nar/gkv1276
Costa, S.S., Guimarães, L.C., Silva, A., Soares, S.C., Baraúna, R.A.: First steps in the analysis of prokaryotic pan-genomes. Bioinform. Biol. Insights 14, 117793222093806 (2020). https://doi.org/10.1177/1177932220938064
Effah, C.Y., Sun, T., Liu, S., Wu, Y.: Klebsiella pneumoniae: an increasing threat to public health. Ann. Clin. Microbiol. Antimicrob. 19(1), 1 (2020). https://doi.org/10.1186/s12941-019-0343-8
Fu, J., Zhang, J., Yang, L., Ding, N., Yue, L., Zhang, X., et al.: Precision methylome and in vivo methylation kinetics characterization of Klebsiella pneumoniae. Genomics Proteomics Bioinform. 20(2), 418–34 (2022). https://doi.org/10.1016/j.gpb.2021.04.002
Ghosh, D., Pal, A., Mohapatra, S., Raj, S., Vivekanandan, P.: Distinct epigenetic signatures of classical and hypervirulent Klebsiella pneumoniae. MSphere 9(1), 1–9 (2024). https://doi.org/10.1128/msphere.00464-23
Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference, (SciPy), pp. 11–5, Pasadena, CA, USA (2008)
Jackson, R.W., Vinatzer, B., Arnold, D.L., Dorus, S., Murillo, J.: The influence of the accessory genome on bacterial pathogen evolution. Mob. Genet. Elements 1(1), 55-65 (2011). https://doi.org/10.4161/mge.1.1.16432
Jünemann, S., Sedlazeck, F.J., Prior, K., Albersmeier, A., John, U., Kalinowski, J., et al.: Updating benchtop sequencing performance comparison. Nat. Biotechnol. 31(4), 294-296 (2013). https://doi.org/10.1038/nbt.2522
Kolmogorov, M., Yuan, J., Lin, Y., Pevzner, P.A.: Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37(5), 540–6 (2019). https://doi.org/10.1038/s41587-019-0072-8
Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14), 1754–60 (2009). https://doi.org/10.1093/bioinformatics/btp324
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al.: The sequence alignment/map format and SAMtools. Bioinformatics 25(16), 2078–9 (2009). https://doi.org/10.1093/bioinformatics/btp352
Liu, Y., Rosikiewicz, W., Pan, Z., Jillette, N., Wang, P., Taghbalout, A., et al.: DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation. Genome Biol. 22(1) (2021). https://doi.org/10.1186/s13059-021-02510-z
Ni, P., Huang, N., Zhang, Z., Wang, D.P., Liang, F., Miao, Y., et al.: DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics 35(22), 4586–95 (2019). https://doi.org/10.1093/bioinformatics/btz276
Nielsen, T.K., Forero-Junco, L.M., Kot, W., Moineau, S., Hansen, L.H., Riber, L.: Detection of nucleotide modifications in bacteria and bacteriophages: strengths and limitations of current technologies and software. Mol. Ecol. 32(6), 1236–47 (2023). https://doi.org/10.1111/mec.16679
Nykrynova, M., Bezdicek, M., Lengerova, M., Skutkova, H. :Bacterial phenotype prediction based on methylation site profiles. In: 2023 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6. IEEE (2023). https://doi.org/10.1109/CIBCB56990.2023.10264900
Rosconi, F., Rudmann, E., Li, J., Surujon, D., Anthony, J., Frank, M., et al.: A bacterial pan-genome makes gene essentiality strain-dependent and evolvable. Nat. Microbiol. 7(10), 1580–92 (2022). https://doi.org/10.1038/s41564-022-01208-7
Schürchm, A.C., Arredondo-Alonso, S., Willems, R.J.L., Goering, R.V.: Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin. Microbiol. Infect. 24(4), 350–4 (2018). https://doi.org/10.1016/j.cmi.2017.12.016
Simpson, J.T., Workman, R.E., Zuzarte, P.C., David, M., Dursi, L.J., Timp, W.: Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14(4), 407–10 (2017). https://doi.org/10.1038/nmeth.4184
Spadar, A., Perdigão, J., Phelan, J., Charleston, J., Modesto, A., Elias, R., et al.: Methylation analysis of Klebsiella pneumoniae from Portuguese hospitals. Sci. Rep. 11(1), 6491 (2021). https://doi.org/10.1038/s41598-021-85724-2
Stoiber, M.H., Quick, J., Egan, R., Lee, J.E., Celniker, S.E., Neely, R., et al.: De novo identification of DNA modifications enabled by genome-guided nanopore signal processing. In: bioRxiv, pp:094672 (2016). https://doi.org/10.1101/094672
Vaser, R., Sović, I., Nagarajan, N., Šikić, M.: Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27(5), 737–46 (2017). https://doi.org/10.1101/gr.214270.116
Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., et al.: Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 9(11) (2014). https://doi.org/10.1371/journal.pone.0112963
Wu, K.M., Li, N.H., Yan, J.J., Tsao, N., Liao, T.L., Tsai, H.C., et al.: Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol. 191(14), 4492–501 (2009). https://doi.org/10.1128/JB.00315-09
Zhao, L.Y., Song, J., Liu, Y., Song, C.X., Yi, C.: Mapping the epigenetic modifications of DNA and RNA. Protein Cell 11(11), 792–808 (2020). https://doi.org/10.1007/s13238-020-00733-7
Acknowledgments.
This work was supported by a grant project from the Czech Science Foundation [GA23-05845S].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nykrynova, M., Bezdicek, M., Lengerova, M., Vitkova, H. (2024). Exploring DNA Methylation Patterns in the Core Genome of Klebsiella pneumoniae. In: Rojas, I., Ortuño, F., Rojas, F., Herrera, L.J., Valenzuela, O. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2024. Lecture Notes in Computer Science(), vol 14849. Springer, Cham. https://doi.org/10.1007/978-3-031-64636-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-64636-2_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-64635-5
Online ISBN: 978-3-031-64636-2
eBook Packages: Computer ScienceComputer Science (R0)