Skip to main content

Unveiling Diversity: Classification of Klebsiella Pneumoniae Plasmids from Long-read Assemblies

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2024)

Abstract

Plasmids, integral to bacterial evolution, pose challenges in their genome classification due to incomplete assembly data. While next-generation sequencing has improved plasmid classification, challenges persist in accurately assembling complete plasmid genomes. This study presents a novel plasmid classification methodology based on complete genome similarity, utilizing three metrics: nucleotide composition, gene occurrence, and structural dissimilarity. Tested on a local Klebsiella pneumoniae population, the method outperforms pMLST and PlasmidFinder, distinguishing plasmids even in fusion cases. Applied across diverse bacterial populations, this reference-free approach proves adaptable, offering a valuable tool for monitoring plasmid mobility and diversity. Third-generation sequencing advancements provide a comprehensive understanding of plasmid dynamics, which is essential for addressing antibiotic resistance and bacterial pathogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acman, M., van Dorp, L., Santini, J.M., Balloux, F.: Large-scale network analysis captures biological features of bacterial plasmids. Nat. Commun. 11(1), 2452 (2020). https://doi.org/10.1038/s41467-020-16282-w

    Article  Google Scholar 

  2. Antipov, D., Raiko, M., Lapidus, A.: Plasmid detection and assembly in genomic and metagenomic data sets 29(6), 961–968 (2019). https://doi.org/10.1101/gr.241299.118

  3. Bezdicek, M., et al.: New multilocus sequence typing scheme for enterococcus faecium based on whole genome sequencing data. Microbiol. Spectr. 11(4), e05107-22 (2023). https://doi.org/10.1128/spectrum.05107-22

    Article  Google Scholar 

  4. Camacho, C., et al.: BLAST+: architecture and applications. BMC Bioinform. 10(1), 421 (2009). https://doi.org/10.1186/1471-2105-10-421

    Article  Google Scholar 

  5. Carattoli, A., et al.: In silico detection and typing of plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 58(7), 3895–3903 (2014). https://doi.org/10.1128/AAC.02412-14

  6. Coluzzi, C., Garcillán-Barcia, M.P., De La Cruz, F., Rocha, E.P.C.: Evolution of plasmid mobility: origin and fate of conjugative and nonconjugative plasmids. Mol. Biol. Evol. 39(6) (2022). 10.1093/molbev/msac115

    Google Scholar 

  7. Garcillán-Barcia, M.P., Redondo-Salvo, S., Vielva, L., de la Cruz, F.: MOBscan: automated annotation of MOB relaxases 2075, 295–308 (2020). https://doi.org/10.1007/978-1-4939-9877-7_21

  8. Garcillán-Barcia, M.P., Redondo-Salvo, S., de la Cruz, F.: Plasmid classifications. Plasmid 126, 102684 (2023). https://doi.org/10.1016/j.plasmid.2023.102684

    Article  Google Scholar 

  9. Harris, R.: Improved Pairwise Alignment of Genomic DNA, Thesis (2007)

    Google Scholar 

  10. Jesus, T.F., et al.: Plasmid atlas: plasmid visual analytics and identification in high-throughput sequencing data. Nucleic Acids Res. 47(D1), D188–D194 (2019). https://doi.org/10.1093/nar/gky1073

    Article  Google Scholar 

  11. Kolmogorov, M., Yuan, J., Lin, Y., Pevzner, P.A.: Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37(5), 540–546 (2019). https://doi.org/10.1038/s41587-019-0072-8

    Article  Google Scholar 

  12. Leger, A., Leonardi, T.: pycoQC, interactive quality control for Oxford Nanopore Sequencing. J. Open Source Softw. 4(34), 1236 (2019). https://doi.org/10.21105/joss.01236

  13. Martin, R.M., Bachman, M.A.: Colonization, infection, and the accessory genome of klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 8(January), 1–15 (2018). https://doi.org/10.3389/fcimb.2018.00004

    Article  Google Scholar 

  14. Nykrynova, M., Barton, V., Bezdicek, M., Lengerova, M., Skutkova, H.: Identification of highly variable sequence fragments in unmapped reads for rapid bacterial genotyping. BMC Genomics 23(3), 445 (2022). https://doi.org/10.1186/s12864-022-08550-4

    Article  Google Scholar 

  15. Orlek, A., Anjum, M.F., Mather, A.E., Stoesser, N., Walker, A.S.: Factors associated with plasmid antibiotic resistance gene carriage revealed using large-scale multivariable analysis. Sci. Rep. 13(1), 2500 (2023). https://doi.org/10.1038/s41598-023-29530-y

    Article  Google Scholar 

  16. Page, A.J., et al.: Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31(22), 3691–3693 (2015). https://doi.org/10.1093/bioinformatics/btv421

    Article  Google Scholar 

  17. Redondo-Salvo, S., et al.: Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat. Commun. 11(1) (2020). https://doi.org/10.1038/s41467-020-17278-2

  18. Robertson, J., Nash, J.H.E.: Mob-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom 4(8) (2018). https://doi.org/10.1099/mgen.0.000206

  19. Rozwandowicz, M., et al.: Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 73(5), 1121–1137 (2018). https://doi.org/10.1093/jac/dkx488

    Article  Google Scholar 

  20. Schmartz, G.P., et al.: PLSDB: advancing a comprehensive database of bacterial plasmids. Nucleic Acids Res. 50(D1), D273–D278 (2022). https://doi.org/10.1093/nar/gkab1111

    Article  Google Scholar 

  21. Schwartz, S., et al.: Human-mouse alignments with blastz. Genome Res. 13(1), 103–107 (2003). https://doi.org/10.1101/gr.809403

    Article  Google Scholar 

  22. Sengupta, M., Austin, S.: Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria. Infect. Immun. 79(7), 2502–9 (2011). https://doi.org/10.1128/iai.00127-11

    Article  Google Scholar 

  23. Shelenkov, A., et al.: Molecular typing, characterization of antimicrobial resistance, virulence profiling and analysis of whole-genome sequence of clinical klebsiella pneumoniae isolates. Antibiot. 9(5) (2020). https://doi.org/10.3390/antibiotics9050261

  24. Smillie, C., Garcillán-Barcia, M.P., Francia, M.V., Rocha, E.P.C., De La Cruz, F.: Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74(3), 434–452 (2010). https://doi.org/10.1128/MMBR.00020-10

    Article  Google Scholar 

  25. Tanizawa, Y., Fujisawa, T., Nakamura, Y.: DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinform. 34(6), 1037–1039 (2018). https://doi.org/10.1093/bioinformatics/btx713

    Article  Google Scholar 

  26. Tian, D., et al.: Acquisition of the conjugative virulence plasmid from a cg23 hypervirulent klebsiella pneumoniae strain enhances bacterial virulence. Front. Cell. Infect. Microbiol. 11 (2021). https://doi.org/10.3389/fcimb.2021.752011

  27. Vaser, R., Sović, I., Nagarajan, N., Šikić, M.: Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27(5), 737–746 (2017). https://doi.org/10.1101/gr.214270.116

    Article  Google Scholar 

  28. Yang, J., Zhang, K., Ding, C., Wang, S., Wu, W., Liu, X.: Exploring multidrug-resistant Klebsiella pneumoniae antimicrobial resistance mechanisms through whole genome sequencing analysis. BMC Microbiol. 23(1), 245 (2023). https://doi.org/10.1186/s12866-023-02974-y

    Article  Google Scholar 

  29. Yang, X., Wang, T.: A novel statistical measure for sequence comparison on the basis of k-word counts. J. Theor. Biol. 318, 91–100 (2013). https://doi.org/10.1016/j.jtbi.2012.10.035

    Article  MathSciNet  Google Scholar 

  30. Zhao, W., et al.: Oxford nanopore long-read sequencing enables the generation of complete bacterial and plasmid genomes without short-read sequencing. Front. Microbiol. 14 (2023). https://doi.org/10.3389/fmicb.2023.1179966

Download references

Acknowledgments.

This work was supported by a grant project from the Czech Science Foundation [GA23-05845S].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Vitkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vitkova, H., Nykrynova, M., Bezdicek, M., Lengerova, M. (2024). Unveiling Diversity: Classification of Klebsiella Pneumoniae Plasmids from Long-read Assemblies. In: Rojas, I., Ortuño, F., Rojas, F., Herrera, L.J., Valenzuela, O. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2024. Lecture Notes in Computer Science(), vol 14849. Springer, Cham. https://doi.org/10.1007/978-3-031-64636-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64636-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64635-5

  • Online ISBN: 978-3-031-64636-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics