Skip to main content

Parkinson’s Disease Progression and Treatment Dynamics Accounting for Nonlocality of Bioneurological Processes

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2024)

Abstract

Parkinson’s disease (PD) is a complicated neurodegenerative condition marked by the gradual degradation of dopaminergic neurons in the substantia nigra, which causes motor and non-motor symptoms. Understanding the dynamics of Parkinson’s disease progression and evaluating treatment techniques necessitates a complete assessment of the nonlocal character of the bioneurological mechanisms involved. This research explores a novel approach to model PD progression by integrating nonlocality into analysing bioneurological processes. Nonlocality in this context refers to the interdependence of the disease progression as the long-term memory. In addition, we have investigated the impact of the two therapeutic interventions on the dynamics of PD, the reduction of extracellular \(\alpha \)-synuclein and controlling the activated microglia. Our findings suggest that the memory effect delays the onset of Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Poewe, W., et al.: Parkinson disease. Nat. Rev. Dis. Primers. 3, 17013 (2017)

    Article  Google Scholar 

  2. DeMaagd, G., Philip, A.: Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharm. Ther. 40(8), 504–532 (2015)

    Google Scholar 

  3. Yen, C., Lin, C.-L., Chiang, M.C.: Exploring the frontiers of neuroimaging: a review of recent advances in understanding brain functioning and disorders. Life 13, 1472 (2023)

    Article  Google Scholar 

  4. Gómez-Benito, M., et al.: Modeling Parkinson’s disease with the alpha-synuclein protein. Front. Pharmacol. 11, 356 (2020)

    Article  Google Scholar 

  5. Bendor, J.T., Logan, T.P., Edwards, R.H.: The function of \(\alpha \)-synuclein. Neuron 79(6), 1044–1066 (2013)

    Article  Google Scholar 

  6. Colonna, M., Butovsky, O.: Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35(1), 441–468 (2017)

    Article  Google Scholar 

  7. Xu, Y., et al.: Microglia in neurodegenerative diseases. Neural Regen. Res. 16(2), 270–280 (2021)

    Article  Google Scholar 

  8. Nayak, D., Roth, T.L., McGavern, D.B.: Microglia development and function. Annu. Rev. Immunol. 32, 367–402 (2014)

    Article  Google Scholar 

  9. Badanjak, K., et al.: The contribution of microglia to neuroinflammation in Parkinson’s disease. Int. J. Mol. Sci. 22(9), 4676 (2021)

    Article  Google Scholar 

  10. Cai, Y., et al.: Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets. Front. Immunol. 13, 856376 (2022)

    Article  Google Scholar 

  11. Ramesh, S., Arachchige, A.S.P.M.: Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: a review of the literature. AIMS Neurosci. 10(3), 200–231 (2023)

    Article  Google Scholar 

  12. Lull, M.E., Block, M.L.: Microglial activation and chronic neurodegeneration. Neurotherapeutics 7(4), 354–365 (2010)

    Article  Google Scholar 

  13. Wang, Q., Liu, Y., Zhou, J.: Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener. 4(1), 1–9 (2015). https://doi.org/10.1186/s40035-015-0042-0

    Article  Google Scholar 

  14. Thieu, T.K.T., Melnik, R.: Coupled effects of channels and synaptic dynamics in stochastic modelling of healthy and Parkinson’s-disease-affected brains. AIMS Bioeng. 9(2), 213–238 (2022)

    Article  Google Scholar 

  15. Pal, S., Melnik, R.: Nonlocal models in biology and life sciences: sources, developments, and applications. arXiv preprint arXiv:2401.14651 (2024)

  16. Badrah, A., Al-Tuwairqi, S.: Modeling the dynamics of innate immune response to Parkinson disease with therapeutic approach. Phys. Biol. 19, 056004 (2022)

    Article  Google Scholar 

  17. Magin, R.L., Ovadia, M.: Modeling the cardiac tissue electrode interface using fractional calculus. J. Vib. Control 14, 1431–1442 (2008)

    Article  Google Scholar 

  18. Dokoumetzidis, A., Macheras, P.: Fractional kinetics in drug absorption and disposition processes. J. Pharmacokinet Pharmacodyn. 36, 165–178 (2009)

    Article  Google Scholar 

  19. Petráš, I., Magin, R.L.: Simulation of drug uptake in a two compartmental fractional model for a biological system. Commun. Nonlinear Sci. Numer. Simul. 16(12), 4588–4595 (2011). https://doi.org/10.1016/j.cnsns.2011.02.012

    Article  Google Scholar 

  20. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1586–1593 (2010)

    Article  MathSciNet  Google Scholar 

  21. Tan, W., et al.: An anomalous subdiffusion model for calcium spark in cardiac myocytes. Appl. Phys. Lett. 91, 183901 (2007)

    Article  Google Scholar 

  22. Lundstrom, B.N., et al.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11, 1335–1342 (2008)

    Article  Google Scholar 

  23. Haukkanen, P., Tossavainen, T.: A generalization of Descartes’ rule of signs and fundamental theorem of algebra. Appl. Math. Comput. 218, 1203–1207 (2011)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the NSERC and the CRC Program for their support. RM is also acknowledging support of the BERC 2022–2025 program and the Spanish Ministry of Science, Innovation and Universities through the Agencia Estatal de Investigacion (AEI) BCAM Severo Ochoa excellence accreditation SEV-2017-0718 and the Basque Government fund AI in BCAM EXP. 2019/00432. This research was partly enabled by support provided by SHARCNET (www.sharcnet.ca) and the Digital Research Alliance of Canada (www.alliancecan.ca).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick Melnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pal, S., Melnik, R. (2024). Parkinson’s Disease Progression and Treatment Dynamics Accounting for Nonlocality of Bioneurological Processes. In: Rojas, I., Ortuño, F., Rojas, F., Herrera, L.J., Valenzuela, O. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2024. Lecture Notes in Computer Science(), vol 14849. Springer, Cham. https://doi.org/10.1007/978-3-031-64636-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64636-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64635-5

  • Online ISBN: 978-3-031-64636-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics