Skip to main content

Mathematical and Statistical Frameworks Fostering Advances in AI Systems and Computing

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2024 Workshops (ICCSA 2024)

Abstract

The rapid expansion of artificial intelligence (AI) areas and applications has become an everyday social reality and the development of computing methods and of technology, in order to accomplish for the respective needs, emerge as one of the biggest challenges of this century. However, a strong background in Mathematics and Statistical fundamentals is crucial to foster the robustness of AI Systems and to attain for the correspondent generalization capabilities. Thus, recognizing the importance and benefits of integrate multiple mathematical methodologies that can leverage the unique strengths of each to create synergistic effects, is here discussed. In the literature it is possible to find diverse connections of Mathematical and Statistical frameworks with AI Systems and Computing. For illustration: Algebra - can be used to manipulate data in high-dimensional spaces; Statistical Analysis - helps on providing confidence in decision-making; Linear Regression- can be used on data modelling and accuracy assessment; and Bayesian statistics - can be used in probabilistic programming for AI applications. This work particularly highlights the evolving role of Hadamard Matrices and Coding Theory, illustrating their synergy with AI Systems and Computing, and how such synergy is driving innovation in various fields and approaching the new reality of Quantic paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Malik, P., et al.: Overview of artificial intelligence in medicine. J. Family Med. Primary Care 8, 2328 (2019)

    Article  Google Scholar 

  2. Poo, M.M.: Towards brain-inspired artificial intelligence. Natl. Sci. Rev. 5(6), 785 (2018)

    Article  Google Scholar 

  3. Balonin, N.A., Petoukhov, S.V., Sergeev, M.B.: Matrices in improvement of systems of artificial intelligence and education of specialists. In: AIMEE 2017. AISC, vol. 658, pp. 39–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67349-3_4

    Chapter  Google Scholar 

  4. Karabayir, I., et al.: A novel learning algorithm to optimize deep neural networks: evolved gradient direction optimizer (EVGO). IEEE Trans. Neural Netw. Learn. Syst. 32, 685–694 (2020)

    Article  MathSciNet  Google Scholar 

  5. Mehmood, F., et al.: An efficient optimization technique for training deep neural networks. Mathematics 11(6), 1360 (2023)

    Article  Google Scholar 

  6. Weinan, E., et al.: A comparative analysis of optimization and generalization properties of two-layer neural network and random feature models under gradient descent dynamics. Sci. China Math. 63, 1235–1258 (2020)

    Article  MathSciNet  Google Scholar 

  7. Haenlein, M., Kaplan, A.: A brief history of artificial intelligence: on the past, present, and future of artificial intelligence. Calif. Manag. Rev. 61, 5–14 (2019)

    Article  Google Scholar 

  8. Duchi, J., et al.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  Google Scholar 

  9. Agaian, S.S.: Hadamard matrices and their applications. In: Dold, A., Eckmann, B. (eds.) LNM, vol. 1168. Springer, Cham (1985)

    Google Scholar 

  10. Banica, T.: Invitation to Hadamard matrices. ffhal-02317067v6f. HAL Open Science (2023). hAL Id: hal-02317067. https://hal.science/hal-02317067v6. Accessed 8 May 2024

  11. Francisco, C., Oliveira, T., et al.: Hadamard matrices and links to information theory. In: Simos, T.E., et al. (eds.) Numerical Analysis and Applied Mathematics, ICNAAM 2014. AIP Conference Proceedings, vol. 1978, p. 460008. American Institute of Physics (2018)

    Google Scholar 

  12. Francisco, C., Oliveira, T.A., Oliveira, A., Carvalho, F.: Hadamard matrices on error detection and correction: useful links to BIBD. In: Ahmed, S.E., Carvalho, F., Puntanen, S. (eds.) IWMS 2016. CS, pp. 99–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17519-1_8

    Chapter  Google Scholar 

  13. Hill, R.C., Griffiths, W.E., Lim, G.C.: Principles of Econometrics, 5th edn. Wiley, New York (2018)

    Google Scholar 

  14. Poston, D.L., Conde, E., Field, L.M.: Applied Regression Models in the Social Sciences. Cambridge University Press, Cambridge (2023)

    Book  Google Scholar 

  15. Geramita, A.V., et al.: Orthogonal Designs: Quadratic Forms and Hadamard Matrices, 1st edn., Lecture Notes in Pure and Applied Mathematics, vol. 45. Dekker, M., New York-Basel (1979)

    Google Scholar 

  16. Hall, J.: Combinatorial Theory, 2nd edn. Wiley, New York (1986)

    Google Scholar 

  17. Mermin, N.: Quantum Computer Science: An Introduction, 1st edn. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  18. Horadam, K.: Hadamard Matrices and Their Applications. Princeton University Press, Princeton (2007)

    Book  Google Scholar 

  19. Francisco, C., Oliveira, T.: BIBD, Hadamard matrices and new technological devices: applications to QR codes. In: Simos, T.E., et al. (eds.) Numerical Analysis and Applied Mathematics, ICNAAM 2014. AIP Conference Proceedings, vol. 1648, p. 840004. American Institute of Physics (2015)

    Google Scholar 

  20. Osborn, J.H.: The Hadamard Maximal Determinant Problem. Honours thesis, University of Melbourne (2002). http://maths-people.anu.edu.au/osborn/publications/pubsall.html. Accessed 8 May 2024

  21. Sawade, K.: A Hadamard matrix of order-268. Graphs Combinatorics 1, 185–187 (1985)

    Article  MathSciNet  Google Scholar 

  22. Sopin, V.: Hadamard conjecture proof. ffhal-03693678f (2022). hAL Id: hal-03693678. https://hal.science/hal-03693678. Accessed 8 May 2024

  23. Mitrouli, M.: Sylvester Hadamard matrices revisited. Special Matrices 2, 120–124 (2014)

    Article  MathSciNet  Google Scholar 

  24. Paleyes, A., et al.: Challenges in deploying machine learning: a survey of case studies. ACM Comput. Surv. 55, 1–29 (2022)

    Article  Google Scholar 

  25. Hedayat, A., Wallis, W.D.: Hadamard matrices and their applications. Ann. Stat. 6(6), 1184–1238 (1978)

    Article  MathSciNet  Google Scholar 

  26. Sloane, N.: A library of Hadamard matrices (2004). http://neilsloane.com/hadamard/. Accessed 7 May 2024

  27. Cameron, J.: Hadamard matrices (2006). http://designtheory.org/library/encyc/topics/had.pdf. Accessed 7 May 2024

  28. University of London: Encyclopedia of design theory (2004). https://webspace.maths.qmul.ac.uk/l.h.soicher/designtheory.org/library/encyc/. Accessed 7 May 2024

  29. Haralambos, E., et al.: Applications of Hadamard matrices. J. Telecommun. Inf. Technol. 2, 3–10 (2003)

    Google Scholar 

  30. Oliveira, T.A.: Provas de agregação: Lição- projecto unidade curricular e curriculum. Agregação, Universidade Aberta (2019). http://hdl.handle.net/10400.2/8888. Accessed 8 May 2024

  31. A.D.R. Group: Quantum optics and quantum many-body systems (2011). https://qoqms.phys.strath.ac.uk/research_qc.html. Accessed 7 May 2024

  32. Woerner, S., Egger, D.: Quantum risk analysis. NPJ Quantum Inf. 5, Article no. 15 (2019)

    Google Scholar 

  33. Biamonte, J., et al.: Quantum machine learning. Nature 549, 195–202 (2017)

    Article  Google Scholar 

  34. Gil-Fuster, E., et al.: Understanding quantum machine learning also requires rethinking generalization. Nat. Commun. 15, 2277 (2024)

    Article  Google Scholar 

  35. Singh, H.: Application of generalized Gaussian radial basis function and its reproducing kernel theory. Mathematics 12, 829 (2024)

    Article  Google Scholar 

Download references

Acknowledgements

The first author was supported by Portuguese funds The Portuguese Foundation for Science and Technology (FCT), through the project UIDB/Multi/00006/2020.

The second author was supported by Portuguese funds The Portuguese Foundation for Science and Technology (FCT), through the Center for Computational and Stochastic Mathematics (CEMAT), University of Lisbon, Portugal, project UIDB/Multi/04621/2020, DOI: (https://doi.org/10.54499/UIDB/04621/2020) and through the Center of Naval Research (CINAV), Naval Academy, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa A. Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oliveira, T.A., Teodoro, M.F. (2024). Mathematical and Statistical Frameworks Fostering Advances in AI Systems and Computing. In: Gervasi, O., Murgante, B., Garau, C., Taniar, D., C. Rocha, A.M.A., Faginas Lago, M.N. (eds) Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14816. Springer, Cham. https://doi.org/10.1007/978-3-031-65223-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-65223-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-65222-6

  • Online ISBN: 978-3-031-65223-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics