Abstract
A computational model for wave fields simulation in a saturated deformable porous medium is presented. The governing differential equations of the model are derived from a general Symmetric Hyperbolic Thermodynamically Compatible (SHTC) two-phase model of saturated porous medium and form a linear PDE system allowing the application of an efficient finite difference method on a staggered grid. A series of numerical test problems showed a strong dependence of wave attenuation on porosity and relaxation time coefficient. It was also shown that the constitutive equations of the SHTC give a constant value of the quality factor over a range of seismic frequencies, making it possible to use the SHTC model to develop seismic methods for monitoring permafrost thaw.
This work was financially supported by the Russian Science Foundation, grant No. 22-11-00104.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Guillemot, A., et al.: Seismic monitoring in the Gugla rock glacier (Switzerland): ambient noise correlation, microseismicity and modelling. Geophys. J. Int. 221(3), 1719–1735 (2020)
Albaric, J., Kühn, D., Ohrnberger, M., Langet, N., Harris, D., Polom, U., et al.: Seismic monitoring of permafrost in Svalbard Arctic Norway. Seismological Res. Lett. 92(5), 2891–2904 (2021)
Steinmann, R., Hadziioannou, C., Larose, E.: Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations. Geophys. J. Int. 224(1), 626–636 (2021)
Biot, M. A.: Theory of propagation of elastic waves in fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956)
Biot, M. A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956)
Carcione, J.M., Morency, C., Santos, V.: Computational poroelasticity - a review. Geophysics 75(5), 75A229-75A243 (2010)
Romenski, E., Reshetova, G., Peshkov, I., Dumbser, M.: Modeling wavefields in saturated elastic porous media based on thermodynamically compatible system theory for two-phase solid-fluid mixtures. Comput. Fluids 206, 104587 (2020)
Reshetova, G., Romenski, E.: Diffuse interface approach to modeling wavefields in a saturated porous medium. Appl. Math. Comput. 398, 125978 (2021)
Godunov, S.K., Romenskii, E.I.: Elements of continuum mechanics and conservation laws. Springer, New York, NY (2003). https://doi.org/10.1007/978-1-4757-5117-8
Romenski, E.: Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Math. Comput. Modell. 28, 115–130 (1998)
Peshkov, I., Pavelka, M., Romenski, E., Grmela, M.: Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations. Continuum Mech. Thermodyn. 30, 1343–1378 (2018)
Romenski, E., Reshetova, G., Peshkov, I.: Computational model for compressible two-phase flow in deformed porous medium. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12949, pp. 224–236. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86653-2_16
Romenski, E., Reshetova, G., Peshkov, I.: Two-phase hyperbolic model for porous media saturated with a viscous fluid and its application to wavefield simulation. Appl. Math. Model. 106, 567–600 (2022)
Carcione, J.M., Kosloff, D., Kosloff, R.: Wave propagation simulation in a linear viscoacoustic medium. Geophys. J. Int. Geophys. 93(2), 393–401 (1988)
Virieux, J.: P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51(1), 889–901 (1986)
Graves, R.W.: Simulating seismic wave propagation in 3D elastic media using staggered- grid finite differences. Bull. Seismol. Soc. Am. 86(4), 1091–1106 (1996)
Samarskii, A.A.: The theory of difference schemes. CRC Press, Boca Raton (2001)
Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R.J., Halada, L.: 3d heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities. Bull. Seismol. Soc. Am. 92(8), 3042–3066 (2002)
Mavko, G., Mukerj, T., Dvorkin, J.: The Rock Physics Handbook, 2nd edn. Cambridge University Press, Cambridge (1999)
Caspari, E., et al.: Attenuation mechanisms in fractured fluid-saturated porous rocks: a numerical modelling study. Geophys. Prospect. 67(4), 935–955 (2019)
Blanch, J., Robertsson, O., Symes, W.: Modeling of a constant Q: methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique. Geophysics 60, 176–184 (1995)
Hestholm, S., et al.: Quick and accurate Q parameterization in viscoelastic wave modeling. Geophysics 71(5), T147–T150 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Reshetova, G., Novikov, M., Romenski, E. (2024). Computational Analysis of Seismic Waves Attenuation Caused by Porosity Variability in a Fluid-Saturated Porous Model of Thawing Permafrost. In: Gervasi, O., Murgante, B., Garau, C., Taniar, D., C. Rocha, A.M.A., Faginas Lago, M.N. (eds) Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14817. Springer, Cham. https://doi.org/10.1007/978-3-031-65238-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-65238-7_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-65237-0
Online ISBN: 978-3-031-65238-7
eBook Packages: Computer ScienceComputer Science (R0)