Skip to main content

Computational Analysis of Seismic Waves Attenuation Caused by Porosity Variability in a Fluid-Saturated Porous Model of Thawing Permafrost

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2024 Workshops (ICCSA 2024)

Abstract

A computational model for wave fields simulation in a saturated deformable porous medium is presented. The governing differential equations of the model are derived from a general Symmetric Hyperbolic Thermodynamically Compatible (SHTC) two-phase model of saturated porous medium and form a linear PDE system allowing the application of an efficient finite difference method on a staggered grid. A series of numerical test problems showed a strong dependence of wave attenuation on porosity and relaxation time coefficient. It was also shown that the constitutive equations of the SHTC give a constant value of the quality factor over a range of seismic frequencies, making it possible to use the SHTC model to develop seismic methods for monitoring permafrost thaw.

This work was financially supported by the Russian Science Foundation, grant No. 22-11-00104.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guillemot, A., et al.: Seismic monitoring in the Gugla rock glacier (Switzerland): ambient noise correlation, microseismicity and modelling. Geophys. J. Int. 221(3), 1719–1735 (2020)

    Article  Google Scholar 

  2. Albaric, J., Kühn, D., Ohrnberger, M., Langet, N., Harris, D., Polom, U., et al.: Seismic monitoring of permafrost in Svalbard Arctic Norway. Seismological Res. Lett. 92(5), 2891–2904 (2021)

    Article  Google Scholar 

  3. Steinmann, R., Hadziioannou, C., Larose, E.: Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations. Geophys. J. Int. 224(1), 626–636 (2021)

    Article  Google Scholar 

  4. Biot, M. A.: Theory of propagation of elastic waves in fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956)

    Google Scholar 

  5. Biot, M. A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956)

    Google Scholar 

  6. Carcione, J.M., Morency, C., Santos, V.: Computational poroelasticity - a review. Geophysics 75(5), 75A229-75A243 (2010)

    Article  Google Scholar 

  7. Romenski, E., Reshetova, G., Peshkov, I., Dumbser, M.: Modeling wavefields in saturated elastic porous media based on thermodynamically compatible system theory for two-phase solid-fluid mixtures. Comput. Fluids 206, 104587 (2020)

    Article  MathSciNet  Google Scholar 

  8. Reshetova, G., Romenski, E.: Diffuse interface approach to modeling wavefields in a saturated porous medium. Appl. Math. Comput. 398, 125978 (2021)

    MathSciNet  Google Scholar 

  9. Godunov, S.K., Romenskii, E.I.: Elements of continuum mechanics and conservation laws. Springer, New York, NY (2003). https://doi.org/10.1007/978-1-4757-5117-8

    Book  Google Scholar 

  10. Romenski, E.: Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Math. Comput. Modell. 28, 115–130 (1998)

    Article  MathSciNet  Google Scholar 

  11. Peshkov, I., Pavelka, M., Romenski, E., Grmela, M.: Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations. Continuum Mech. Thermodyn. 30, 1343–1378 (2018)

    Article  MathSciNet  Google Scholar 

  12. Romenski, E., Reshetova, G., Peshkov, I.: Computational model for compressible two-phase flow in deformed porous medium. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12949, pp. 224–236. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86653-2_16

    Chapter  Google Scholar 

  13. Romenski, E., Reshetova, G., Peshkov, I.: Two-phase hyperbolic model for porous media saturated with a viscous fluid and its application to wavefield simulation. Appl. Math. Model. 106, 567–600 (2022)

    Article  MathSciNet  Google Scholar 

  14. Carcione, J.M., Kosloff, D., Kosloff, R.: Wave propagation simulation in a linear viscoacoustic medium. Geophys. J. Int. Geophys. 93(2), 393–401 (1988)

    Article  Google Scholar 

  15. Virieux, J.: P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51(1), 889–901 (1986)

    Article  Google Scholar 

  16. Graves, R.W.: Simulating seismic wave propagation in 3D elastic media using staggered- grid finite differences. Bull. Seismol. Soc. Am. 86(4), 1091–1106 (1996)

    Article  Google Scholar 

  17. Samarskii, A.A.: The theory of difference schemes. CRC Press, Boca Raton (2001)

    Book  Google Scholar 

  18. Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R.J., Halada, L.: 3d heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities. Bull. Seismol. Soc. Am. 92(8), 3042–3066 (2002)

    Article  Google Scholar 

  19. Mavko, G., Mukerj, T., Dvorkin, J.: The Rock Physics Handbook, 2nd edn. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  20. Caspari, E., et al.: Attenuation mechanisms in fractured fluid-saturated porous rocks: a numerical modelling study. Geophys. Prospect. 67(4), 935–955 (2019)

    Article  Google Scholar 

  21. Blanch, J., Robertsson, O., Symes, W.: Modeling of a constant Q: methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique. Geophysics 60, 176–184 (1995)

    Article  Google Scholar 

  22. Hestholm, S., et al.: Quick and accurate Q parameterization in viscoelastic wave modeling. Geophysics 71(5), T147–T150 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Reshetova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reshetova, G., Novikov, M., Romenski, E. (2024). Computational Analysis of Seismic Waves Attenuation Caused by Porosity Variability in a Fluid-Saturated Porous Model of Thawing Permafrost. In: Gervasi, O., Murgante, B., Garau, C., Taniar, D., C. Rocha, A.M.A., Faginas Lago, M.N. (eds) Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14817. Springer, Cham. https://doi.org/10.1007/978-3-031-65238-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-65238-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-65237-0

  • Online ISBN: 978-3-031-65238-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics