Skip to main content

Spatial Multi-criteria Analysis for the Planning of Green Hydrogen Infrastructure: The Case Study of the Industrial Area of Viggiano

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2024 Workshops (ICCSA 2024)

Abstract

The paper examines the criteria that help to identify the most suitable sites for the location of plants, structures, and networks needed to produce, store, and distribute green hydrogen produced through water electrolysis. To carry out this analysis, it was necessary to work through the integration of two tools: the Analytic Hierarchy Process (AHP) and the Geographic Information System (GIS). While AHP allows for the analytical analysis of criteria, GIS identifies the spatial relationships generated in identifying suitable sites for the Green Hydrogen Infrastructure (GHI) placement. The approach considers several criteria that fall into three main categories: technical, economic, and environmental. Developing the criteria results in a land suitability map as the final product. The process mentioned is evident in the case study, namely identifying suitable sites for the location of GHIs in the Viggiano industrial area in Basilicata (Italy). The paper reveals that the methodology supports urban planners, decision-makers, and stakeholders in developing and using green hydrogen as a sustainable energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harvey, M.: Climate emergency. In: Climate Emergency, pp. 1–29. Emerald Publishing Limited (2021). https://doi.org/10.1108/978-1-80043-330-420211001

  2. Abel, D.W., et al.: Air-quality-related health impacts from climate change and from adaptation of cooling demand for buildings in the eastern United States: an interdisciplinary modeling study. PLoS Med. 15 (2018). https://doi.org/10.1371/journal.pmed.1002599

  3. Patz, J.A., Gibbs, H.K., Foley, J.A., Rogers, J.V., Smith, K.R.: Climate change and global health: quantifying a growing ethical crisis. EcoHealth (2007). https://doi.org/10.1007/s10393-007-0141-1

    Article  Google Scholar 

  4. Limaye, V.S.: Making the climate crisis personal through a focus on human health. Clim. Change. 166 (2021). https://doi.org/10.1007/s10584-021-03107-y

  5. Limaye, V.S., Max, W., Constible, J., Knowlton, K.: Estimating the costs of inaction and the economic benefits of addressing the health harms of climate change. Health Aff. 39, 2098–2104 (2020). https://doi.org/10.1377/hlthaff.2020.01109

    Article  Google Scholar 

  6. Siddik, M.A., Islam, M.T., Zaman, A.K.M.M., Hasan, M.M.: Current status and correlation of fossil fuels consumption and greenhouse gas emissions (2021)

    Google Scholar 

  7. Arutyunov, V.S., Lisichkin, G. V: Energy resources of the 21st century: problems and forecasts. Can renewable energy sources replace fossil fuels? Russian Chem. Rev. 86, 777–804 (2017). https://doi.org/10.1070/rcr4723

  8. Martins, K., Carton, J.G.: Prospective roles for green hydrogen as part of Ireland’s decarbonisation strategy. Results Eng. 18, 101030 (2023). https://doi.org/10.1016/J.RINENG.2023.101030

    Article  Google Scholar 

  9. Vilbergsson, K.V., Dillman, K., Emami, N., Ásbjörnsson, E.J., Heinonen, J., Finger, D.C.: Can remote green hydrogen production play a key role in decarbonizing Europe in the future? A cradle-to-gate LCA of hydrogen production in Austria, Belgium, and Iceland. Int. J. Hydrogen Energy 48, 17711–17728 (2023). https://doi.org/10.1016/J.IJHYDENE.2023.01.081

    Article  Google Scholar 

  10. Maestre, V.M., Ortiz, A., Ortiz, I.: Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications. Renew. Sustain. Energy Rev. 152, 111628 (2021). https://doi.org/10.1016/J.RSER.2021.111628

    Article  Google Scholar 

  11. Ma, N., Zhao, W., Wang, W., Li, X., Zhou, H.: Large scale of green hydrogen storage: opportunities and challenges. Int. J. Hydrogen Energy 50, 379–396 (2024). https://doi.org/10.1016/J.IJHYDENE.2023.09.021

    Article  Google Scholar 

  12. Hwang, J., Maharjan, K., Cho, H.J.: A review of hydrogen utilization in power generation and transportation sectors: achievements and future challenges. Int. J. Hydrogen Energy 48, 28629–28648 (2023). https://doi.org/10.1016/J.IJHYDENE.2023.04.024

    Article  Google Scholar 

  13. Falcone, P.M., Hiete, M., Sapio, A.: Hydrogen economy and sustainable development goals: review and policy insights. Curr. Opin. Green Sustain. Chem. 31, 100506 (2021). https://doi.org/10.1016/J.COGSC.2021.100506

    Article  Google Scholar 

  14. Szałek, A., Pielecha, I., Cieslik, W.: Fuel cell electric vehicle (FCEV) energy flow analysis in real driving conditions (RDC). Energies (Basel). 14 (2021). https://doi.org/10.3390/en14165018

  15. Wróbel, K., Wróbel, J., Tokarz, W., Lach, J., Podsadni, K., Czerwiński, A.: Hydrogen internal combustion engine vehicles: a review (2022).https://doi.org/10.3390/en15238937

  16. Shiva Kumar, S., Lim, H.: An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 8, 13793–13813 (2022). https://doi.org/10.1016/J.EGYR.2022.10.127

    Article  Google Scholar 

  17. Burton, N.A., Padilla, R.V., Rose, A., Habibullah, H.: Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renew. Sustain. Energy Rev. 135, 110255 (2021). https://doi.org/10.1016/J.RSER.2020.110255

    Article  Google Scholar 

  18. Carmo, M., Fritz, D.L., Mergel, J., Stolten, D.: A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013). https://doi.org/10.1016/J.IJHYDENE.2013.01.151

    Article  Google Scholar 

  19. Abbasi, H.N., Zeeshan, M.: An integrated geographic information system and analytical hierarchy process based approach for site suitability analysis of on-grid hybrid concentrated solar-biomass powerplant. Renew. Sustain. Energy Rev. 187, 113786 (2023). https://doi.org/10.1016/J.RSER.2023.113786

    Article  Google Scholar 

  20. Giamalaki, M., Tsoutsos, T.: Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach. Renew. Energy 141, 64–75 (2019). https://doi.org/10.1016/j.renene.2019.03.100

    Article  Google Scholar 

  21. Gacu, J.G., Garcia, J.D., Fetalvero, E.G., Catajay-Mani, M.P., Monjardin, C.E.F.: Suitability Analysis Using GIS-Based Analytic Hierarchy Process (AHP) for Solar Power Exploration. Energies (Basel). 16 (2023). https://doi.org/10.3390/en16186724

  22. Islam, M.R., Aziz, M.T., Alauddin, M., Kader, Z., Islam, M.R.: Site suitability assessment for solar power plants in Bangladesh: a GIS-based analytical hierarchy process (AHP) and multi-criteria decision analysis (MCDA) approach. Renew. Energy 220, 119595 (2024). https://doi.org/10.1016/J.RENENE.2023.119595

    Article  Google Scholar 

  23. Rahmani, S., Scorzelli, R., Ragone, F., Fattoruso, G., Murgante, B.: Utilizing spatial multi-criteria analysis to determine optimal sites for green hydrogen infrastructure deployment. In: Lecture Notes in Civil Engineering. pp. 385–396. Springer Science and Business Media Deutschland GmbH (2024). https://doi.org/10.1007/978-3-031-54096-7_34

  24. Scorzelli, R., Rahmani, S., Telesca, A., Fattoruso, G., Murgante, B.: Spatial multi-criteria analysis for identifying suitable locations for green hydrogen infrastructure. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 480–494. Springer Science and Business Media Deutschland GmbH (2023). https://doi.org/10.1007/978-3-031-37114-1_33

  25. Yousefi, H., Motlagh, S.G., Montazeri, M.: Multi-criteria decision-making system for wind farm site-selection using geographic information system (GIS): case study of Semnan Province, Iran. Sustainability (Switzerland). 14 (2022). https://doi.org/10.3390/su14137640

  26. Tunc, A., Tuncay, G., Alacakanat, Z., Sevimli, F.S.: Gis based solar power plants site selection using analytic hierarchy process (AHP) in Istanbul, Turkey. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, pp. 1353–1360 (2019). https://doi.org/10.5194/isprs-archives-XLII-2-W13-1353-2019

  27. Hendawy, E., et al.: The prediction and assessment of the impacts of soil sealing on agricultural land in the North Nile Delta (Egypt) using satellite data and GIS modeling. Sustainability (Switzerland). 11, (2019). https://doi.org/10.3390/su11174662

  28. Molaei Qelichi, M., Murgante, B., Yousefi Feshki, M., Zarghamfard, M.: Urbanization patterns in Iran visualized through spatial auto-correlation analysis. Spat. Inf. Res. 25, 627–633 (2017). https://doi.org/10.1007/s41324-017-0128-0

    Article  Google Scholar 

  29. Malczewski, J.: GIS-based multicriteria decision analysis: a survey of the literature. Int. J. Geogr. Inf. Sci. 20, 703–726 (2006). https://doi.org/10.1080/13658810600661508

    Article  Google Scholar 

  30. Georgiadis, D.R., Mazzuchi, T.A., Sarkani, S.: Using multi criteria decision making in analysis of alternatives for selection of enabling technology. Syst. Eng. 16, 287–303 (2013). https://doi.org/10.1002/sys.21233

    Article  Google Scholar 

  31. Kiker, G.A., Bridges, T.S., Varghese, A., Seager, P.T.P., Linkov, I.: Application of multicriteria decision analysis in environmental decision making. Integr. Environ. Assessment. Manage. (2005). https://doi.org/10.1897/IEAM_2004a-015.1

    Article  Google Scholar 

  32. Della Spina, L.: Cultural heritage: a hybrid framework for ranking adaptive reuse strategies. Buildings 11 (2021). https://doi.org/10.3390/buildings11030132

  33. Marcelo, D., Mandri-Perrott, C., House, S., Schwartz, J.: Prioritization of infrastructure projects: a decision support framework (2015)

    Google Scholar 

  34. Henke, I., Cartenì, A., Di Francesco, L.: A sustainable evaluation processes for investments in the transport sector: a combined multi-criteria and cost–benefit analysis for a new highway in Italy. Sustainability (Switzerland). 12, 1–27 (2020). https://doi.org/10.3390/su12239854

    Article  Google Scholar 

  35. Saaty, R.W.: The analytic hierarchy process-what it is and how it is used. Math. Model. 9, 161–176 (1987). https://doi.org/10.1016/0270-0255(87)90473-8

    Article  MathSciNet  Google Scholar 

  36. Zyoud, S.H., Fuchs-Hanusch, D.: A bibliometric-based survey on AHP and TOPSIS techniques. Expert Syst. Appl. 78, 158–181 (2017). https://doi.org/10.1016/J.ESWA.2017.02.016

    Article  Google Scholar 

  37. Vaidya, O.S., Kumar, S.: Analytic hierarchy process: an overview of applications. Eur. J. Oper. Res. 169, 1–29 (2006). https://doi.org/10.1016/j.ejor.2004.04.028

  38. Saaty, T.L.: Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1, 83–98 (2008). https://doi.org/10.1504/IJSSci.2008.01759

    Article  Google Scholar 

  39. Saaty, T.L., Vargas, L.G.: Hierarchical analysis of behavior in competition: prediction in chess. Behav. Sci. 25, 180–191 (1980). https://doi.org/10.1002/bs.3830250303

  40. Fusco Girard, L., Cerreta, M., De Toro, P.: analytic hierarchy process (AHP) and geographical information systems (GIS): an integrated spatial assessment for planning strategic choices. Int. J. Anal. Hierarchy Process. 4 (2012). https://doi.org/10.13033/ijahp.v4i1.102

  41. Chakhar, S., Mousseau, V.: GIS-based multicriteria spatial modeling generic framework. Int. J. Geogr. Inf. Sci. 22, 1159–1196 (2008). https://doi.org/10.1080/13658810801949827

    Article  Google Scholar 

  42. Congalton, R.G.: Exploring and Evaluating the Consequences of Vector-to-Raster and Raster-to-Vector Conversion (1997)

    Google Scholar 

  43. Hill, M.J., Braaten, R., Veitch, S.M., Lees, B.G., Sharma, S.: Multi-criteria decision analysis in spatial decision support: the ASSESS analytic hierarchy process and the role of quantitative methods and spatially explicit analysis. Environ. Model. Softw. 20, 955–976 (2005). https://doi.org/10.1016/j.envsoft.2004.04.014

  44. Saganeiti, L., Mustafa, A., Teller, J., Murgante, B.: Modeling urban sprinkling with cellular automata. Sustain. Cities Soc. 65, 102586 (2021). https://doi.org/10.1016/J.SCS.2020.102586

    Article  Google Scholar 

  45. Saganeiti, L., Fiorini, L., Zullo, F., Murgante, B.: Urban dispersion indicator to assess the Italian settlement pattern. Environ. Plan B Urban Anal. City Sci. 23998083231218780 (2023). https://doi.org/10.1177/23998083231218779

  46. Bohra, S.S., Anvari-Moghaddam, A.: A comprehensive review on applications of multicriteria decision-making methods in power and energy systems. Int. J. Energy Res. (2022). https://doi.org/10.1002/er.7517

    Article  Google Scholar 

  47. Manganelli, B., Murgante, B., Saganeiti, L.: The social cost of urban sprinkling. Sustainability (Switzerland) 12 (2020). https://doi.org/10.3390/su12062236

  48. Murgante, B., Borruso, G., Balletto, G., Castiglia, P., Dettori, M.: Why Italy first? Health, geographical and planning aspects of the COVID-19 outbreak. Sustainability (Switzerland) 12 (2020). https://doi.org/10.3390/su12125064

Download references

Acknowledgements

The authors would like to thank ENEA. This research is funded by the ongoing Project POR H2 - RICERCA E SVILUPPO DI TECNOLOGIE PER LA FILIERA DELL’IDROGENO. Accordo di Programma MiTE - ENEA, PNRR Investimento 3.5 - Ricerca e Sviluppo sull’Idrogeno.

The authors would like to thank the “Centro Olio Val d’Agri” COVA for their willingness and for providing the necessary data to implement the case study through the Sustainability Report (2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossella Scorzelli .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scorzelli, R., Rahmani, S., Delfino, M., Fattoruso, G., Annunziata, A., Murgante, B. (2024). Spatial Multi-criteria Analysis for the Planning of Green Hydrogen Infrastructure: The Case Study of the Industrial Area of Viggiano. In: Gervasi, O., Murgante, B., Garau, C., Taniar, D., C. Rocha, A.M.A., Faginas Lago, M.N. (eds) Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14819. Springer, Cham. https://doi.org/10.1007/978-3-031-65282-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-65282-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-65281-3

  • Online ISBN: 978-3-031-65282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics