Skip to main content

An Approach for Spatial Optimization on Positioning Surveillance Cameras

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2024 Workshops (ICCSA 2024)

Abstract

Strategic crime monitoring, surveillance, and prevision in public security is a fundamental topic in public administration to efficiently control certain types of criminal behavior that affect citizens’ integrity and quality of life. Technological advances in computer networks and video surveillance cameras allow improving monitoring coverage by installing closed circuit television network systems comprising several high-resolution panoramic cameras in public roads and streets. This is specially useful in cities with high density of population where, naturally, crime density is high in specific zones. One of the main problems is to decide where to locate the surveillance video-cameras. To address this problem, we present an optimization-based methodology that suggests where the surveillance cameras are more likely to observe more crimes. In order to implement the optimization methodology, we propose the use of the Criminal Visibility Index that evaluates how optimal the position of a video-camera is, given the historical reported geo-referenced criminal incidence. The definition of this index is fundamental to pursue the cost function that can be solved by means of optimization algorithms for non-convex problems. Our proposal focuses on the spatial aspects of the optimization problem and relies on the implementation of a greedy algorithm that has the advantage to find a near-global optimal solution for any number of surveillance cameras limited by the available computing memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Basu, S., Sharma, M., Ghosh, P.S.: Metaheuristic applications on discrete facility location problems: a survey. Opsearch 52, 530–561 (2015). https://doi.org/10.1007/s12597-014-0190-5

    Article  MathSciNet  Google Scholar 

  2. Bennett, T., Gelsthorpe, L.: Public attitudes towards in public places. Stud. Crime Crime Prevent. 5(1), 72–90 (1996)

    Google Scholar 

  3. Bodor, R., Schrater, P., Papanikolopoulos, N.: Multi-camera positioning to optimize task observability. In: International Conference on Advanced Video And Signal Based Surveillance, pp. 552–557. IEEE (2005). https://doi.org/10.1109/AVSS.2005.1577328

  4. Church, R., Meadows, M.: Location modeling utilizing maximum service distance criteria. Geogr. Anal. 11(4), 358–373 (1979). https://doi.org/10.1111/j.1538-4632.1979.tb00702.x

    Article  Google Scholar 

  5. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, pp. 1033–1038. MIT Press, “second" edn. (2001). https://mitpress.mit.edu/9780262046305/introduction-to-algorithms/

  6. Hogan, K., ReVelle, C.: Concepts and applications of backup coverage. Manage. Sci. 32(11), 1290–1306 (2012). https://doi.org/10.1287/MNSC.32.11.1434

    Article  Google Scholar 

  7. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst., Man, Cybern. Part C 34(3), 334–352 (2004). https://doi.org/10.1016/j.artint.2008.12.005

    Article  Google Scholar 

  8. Jordanski, M.: Metaheuristic approaches for solving facility location and scale decision problem with customer preference. IPSI BgD Transactions (Two Research Oriented Journals) 13(1) (2017)

    Google Scholar 

  9. Jun, S., Chang, T., Yoon, H.: Placing visual sensors using heuristic algorithms for bridge surveillance. Appl. Sci. 8(1), 70 (2018). https://doi.org/10.3390/app8010070

    Article  Google Scholar 

  10. Konda, K.R., Conci, N.: Global and local coverage maximization in multi-camera networks by stochastic optimization. Infocommun. J. 5(1) (2013)

    Google Scholar 

  11. Li, A.: Pros and cons of surveillance cameras in public places (2023). https://reolink.com/pros-cons-of-surveillance-cameras-in-public-places. Accessed Jan 25 2024

  12. México Desconocido: Historia de la Feria Nacional de San Marcos en Aguascalientes (ND). https://www.mexicodesconocido.com.mx/feria-san-marcos-aguascalientes.html. Accessed 25 Jan 2024

  13. Morris, B.T., Trivedi, M.M.: A survey of vision-based trajectory learning and analysis for surveillance. IEEE Trans. Circuits Syst. Video Technol. 18(8), 1114–1127 (2008). https://doi.org/10.1109/TCSVT.2008.927109

    Article  Google Scholar 

  14. Murray, A., Kim, K., Davis, J., Machiraju, R., Parent, R.: Coverage optimization to support security monitoring. Comput. Envirom. Urban Syst. 31(2), 133–147 (2007). https://doi.org/10.1016/j.compenvurbsys.2006.06.002

    Article  Google Scholar 

  15. Norris, C., McCahill, M., Wood, D.: Editorial. The growth of CCTV: a global perspective on the international diffusion of video surveillance in publicly accessible space. Surveill. Society 2(2,3), 110–135 (2004). https://doi.org/10.24908/ss.v2i2/3.3369

  16. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press (1987)

    Google Scholar 

  17. Rana, S.: Isovist Analyst - An Arcview extension for planning visual surveillance. ESRI International User Conference. ESRI (on CD-ROM), 1(Chvátal), 9 (2006)

    Google Scholar 

  18. Tapia-McClung, R., Gómez-Fernández, T.: A methodology for defining smart camera surveillance locations in urban settings. In: Misra, S., Gervasi, O., Murgante, B., Stankova, E., Korkhov, V., Torre, C., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E. (eds.) Lecture Notes in Computer Science (Vol. 11621), pp. 505–520. Springer (2019). https://doi.org/10.1007/-030-24302-9_36

  19. Waples, S., Gill, M., Fisher, P.: Does CCTV displace crime? Criminol. Crim. Just. 9(2), 207–224 (2009). https://doi.org/10.1177/1748895809102

    Article  Google Scholar 

  20. Xie, Y., Wang, M., Liu, X., Wu, Y.: Surveillance video synopsis in GIS. ISPRS Int. J. Geo Inf. 6(11), 333 (2017). https://doi.org/10.3390/ijgi6110333

    Article  Google Scholar 

  21. Xu, Y.C., Lei, B., Hendriks, E.A.: Camera network coverage improving by particle swarm optimization. Eurasip J. Image Video Process. 2011, 458283 (2011). https://doi.org/10.1155/2011/458283

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Tapia-McClung .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tapia-McClung, R., Lopez-Farias, R. (2024). An Approach for Spatial Optimization on Positioning Surveillance Cameras. In: Gervasi, O., Murgante, B., Garau, C., Taniar, D., C. Rocha, A.M.A., Faginas Lago, M.N. (eds) Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14819. Springer, Cham. https://doi.org/10.1007/978-3-031-65282-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-65282-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-65281-3

  • Online ISBN: 978-3-031-65282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics