Skip to main content

An Analysis of the Airbnb Market: A Detailed Look at Four Italian Cities

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2024 Workshops (ICCSA 2024)

Abstract

The Sharing Economy, or the economy of sharing, is an economic phenomenon that has rapidly spread in recent years, transforming the ways in which resources and services are accessed and consumed. This phenomenon has had a significant impact on consumption dynamics, redefining the concept of ownership and promoting the idea of temporary and shared access to goods. An emblematic example is represented by Airbnb, a multinational company founded in 2008 and valued at 35 billion dollars. With over 4 million hosts and 800 million guests in more than 220 countries and regions, Airbnb offers communities the opportunity to make the most of their cultural and scenic heritage, attracting a variety of visitors eager for authentic experiences. In this regard, the present study proposes a methodological model capable of empirically analyzing the Airbnb market in four Italian cities, adopting an integrated approach that combines Principal Component Analysis (PCA) and clustering based on the use of the k-means algorithm, to arrive at a deeper understanding of the data. The results emerging from the research highlight a significantly negative correlation between price and distance from the city center, also revealing a negative correlation between reviews and price, as well as between reviews and distance from the city center. Through the analysis of the research results, it aims to make a relevant contribution to academic literature, providing new perspectives and insights for further studies on Airbnb dynamics, as well as on the economic and social implications of resource and service sharing in the context of the Sharing Economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Quattrone, G., Proserpio, D., Quercia, D., Capra, L., Musolesi, M.: Who benefits from the sharing economy of Airbnb? In: WWW 2016: Proceedings of the 25th International Conference on World Wide Web, pp. 1385–1394. ACM, New York (2016)

    Google Scholar 

  2. Felson, M., Spaeth, J.L.: Community structure and collaborative consumption: a routine activity approach. Am. Behav. Sci. 21, 23 (1978). https://doi.org/10.1177/000276427802100411

    Article  Google Scholar 

  3. De Paola, P., Previtera, S., Manganelli, B., Forte, F., Del Giudice, F.P.: Interpreting housing prices with a multidisciplinary approach based on nature-inspired algorithms and quantum computing. Buildings 13, 1603 (2023). https://doi.org/10.3390/buildings13071603

    Article  Google Scholar 

  4. Guttentag, D., Smith, S., Potwarka, L., Havitz, M.: Why tourists choose Airbnb: a motivation-based segmentation study. J. Travel Res. 57(3), 342–359 (2018). https://doi.org/10.1177/0047287517696980

    Article  Google Scholar 

  5. Guttentag, D.: Airbnb: disruptive innovation and the rise of an informal tourism accommodation sector. Curr. Issue Tour. 18(12), 1192–1217 (2015)

    Article  Google Scholar 

  6. Zervas, G., Proserpio, D., Byers, J.W.: The rise of the sharing economy: estimating the impact of Airbnb on the hotel industry. J. Mark. Res. 54(5), 687–705 (2017)

    Article  Google Scholar 

  7. Lee, D.: How Airbnb short-term rentals exacerbate Los Angeles’s affordable housing crisis: analysis and policy recommendations. Harvard Law Policy Rev. 10(1), 229–253 (2016)

    Google Scholar 

  8. De Paola, P., Iannitti, E., Manganelli, B., Del Giudice, F.P.: (Con)temporary housing: the AirBnb phenomenon and its impact on the Naples historic center’s rental market. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol. 14109. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37120-2_28

  9. Oskam, J., Boswijk, A.: Airbnb: the future of networked hospitality businesses. J. Tourism Futures 2(1), 22–42 (2016). https://doi.org/10.1108/JTF-11-2015-0048

    Article  Google Scholar 

  10. Jefferson-Jones, J.: Airbnb and the housing segment of the modern sharing economy: are short-term rental restrictions an unconstitutional taking, 42 Hastings Const. L.Q. 557 (2015). https://repository.uclawsf.edu/hastings_constitutional_law_quaterly/vol42/iss3/3

  11. Adamiak, C., Szyda, B., Dubownik, A., García-Álvarez, D.: Airbnb offer in Spain—spatial analysis of the pattern and determinants of its distribution. ISPRS Int. J. Geo-Inf. 8, 155 (2019). https://doi.org/10.3390/ijgi8030155

    Article  Google Scholar 

  12. Yang, Y., Mao, Z. (Eddie).: Welcome to my home! an empirical analysis of Airbnb supply in US cities. J. Travel Res. 58(8), 1274–1287 (2019). https://doi.org/10.1177/0047287518815984

  13. Mody, M., Suess, C., Dogru, T.: Comparing Apples and Oranges? Examining the Impacts of Airbnb on Hotel Performance in Boston (2017). www.bu.edu/bhr

  14. Tussyadiah, I.P.: An exploratory study on drivers and deterrents of collaborative consumption in travel. In: Tussyadiah, I., Inversini, A. (eds.) Information and Communication Technologies in Tourism 2015. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14343-9_59

  15. Jefferson-Jones, J.: Can short-term rental arrangements increase home values? a case for Airbnb and other home sharing arrangements. SSRN Scholarly Paper No. ID 2714051, Rochester, Social Science Research Network, NY (2015). http://papers.ssrn.com/abstract=2714051

  16. Barron, K., Kung, E., Proserpio, n.d. D.: The Effect of Home-Sharing on House Prices and Rents: Evidence from Airbnb. https://ssrn.com/abstract=3006832

  17. Barron, K., Kung, E., Proserpio, D. The Sharing Economy and Housing Affordability: Evidence from Airbnb. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3006832

  18. Ayouba, K., Breuille´, M.L., Grivault, C., Le Gallo, J.: Does Airbnb disrupt the private rental market? an empirical analysis for French cities. Int. Reg. Sci. Rev. 43(1–2), 76–104 (2020)

    Google Scholar 

  19. Wachsmuth, D., Weisler, A.: Airbnb and the rent gap: gentrification through the sharing economy. Environ. Plann. A: Econ. Space 50(6), 1147–1170 (2018). https://doi.org/10.1177/0308518X18778038

    Article  Google Scholar 

  20. Jordan, E.J., Moore, J.: An in-depth exploration of residents’ perceived impacts of transient vacation rentals. J. Travel Tour. Mark. 35(1), 90–101 (2018)

    Article  Google Scholar 

  21. Curtis, S.K., Lehner, M.: Defining the sharing economy for sustainability. Sustainability 11, 567 (2019)

    Article  Google Scholar 

  22. Botsman, R., Rogers, R.: What’s Mine is Yours: The Rise of Collaborative Consumption. Harper Business, New York (2010)

    Google Scholar 

  23. Massimo, D.E., Del Giudice, V., Musolino, M., De Paola, P., Del Giudice, F.P.: Green building to overcome climate change: the support of energy simulation programs in Gis environment. In: Calabrò, F., Della Spina, L., Piñeira Mantiñán, M.J. (eds.) New Metropolitan Perspectives. NMP 2022. Lecture Notes in Networks and Systems, vol. 482. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06825-6_68

  24. Massimo, D.E., Del Giudice, V., Musolino, M., De Paola, P., Del Giudice, F.P.: A bio ecological prototype green building toward solution of energy crisis. In: Calabrò, F., Della Spina, L., Piñeira Mantiñán, M.J. (eds.) New Metropolitan Perspectives. NMP 2022. Lecture Notes in Networks and Systems, vol. 482. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06825-6_67

  25. Del Giudice, V., De Paola, P., Morano, P., Tajani, F., Del Giudice, F.P., Anelli, D.: Depreciation of residential buildings and maintenance strategies in urban multicultural contexts. In: Napoli, G., Mondini, G., Oppio, A., Rosato, P., Barbaro, S. (eds.) Values, Cities and Migrations. Green Energy and Technology. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-16926-7_16

  26. Schneiderman, E.T.: Airbnb in the city https://ag.ny.gov/pdfs/AIRBNB%20REPORT.pdf (2014)

  27. Streitfeld, D.: Airbnb listings mostly illegal, New York State contends (2014). https://www.nytimes.com/2014/10/16/business/airbnb-listings-mostly-illegal-state-contends.html?_r=0

  28. Manganelli, B., Tataranna, S., De Paola, P.: A comparison of short-term and long-term rental market in an Italian city. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12251. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58808-3_63

  29. http://insideairbnb.com. Accessed 18 Feb 2024

  30. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, Berlin (2006)

    Google Scholar 

  31. Amato, F., Lombardo, L., Tonini, M., Marvuglia, A., Castro-Camilo, D., Guignard, F.: Spatiotemporal data science: theoretical advances and applications. Stochastic Environ. Res. Risk Assess. 36(8), 2027–2029 (2022 b)

    Google Scholar 

  32. Jolliffe, I.: Principal Component Analysis. Springer, New York (2013)

    Google Scholar 

  33. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning, vol. 112, p. 18. Springer, New York (2013)

    Google Scholar 

  34. Wikle, C., Zammit-Mangion, A., Cressie, N.: Spatio-Temporal Statistics with R. CRC Press, Boca Raton (2019)

    Book  Google Scholar 

  35. Preisendorfer, R.: Principal Component Analysis in Meteorology and Oceanography Developments in Atmospheric Science. Elsevier, Amsterdam (1988)

    Google Scholar 

  36. Amato, F., Guignard, F., Robert, S., Kanevski, M.: A novel framework for spatio-temporal prediction of environmental data using deep learning. Sci. Rep. 10(1), 22243 (2020 a)

    Google Scholar 

  37. Amato, F., Guignard, F., Humphrey, V., Kanevski, M.: Spatio-temporal evolution of global surface temperature distributions. In: Proceedings of the 10th International Conference on Climate Informatics, pp. 37–43, September 2020 b

    Google Scholar 

  38. Amato, F., Guignard, F., Walch, A., Mohajeri, N., Scartezzini, J.L., Kanevski, M.: Spatio-temporal estimation of wind speed and wind power using extreme learning machines: predictions, uncertainty and technical potential. Stochastic Environ. Res. Risk Assess. 36(8), 2049–2069 (2022 a)

    Google Scholar 

  39. Liao, T.W.: Clustering of time series data —- a survey Pattern Recognition, 38(11), 1857–1874 (2005)

    Google Scholar 

  40. Jain, A.K.: Data clustering: 50 years beyond K-means. Patt. Recognit. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  41. Amato, F., Laib, M., Guignard, F., Kanevski, M.: Analysis of air pollution time series using complexity-invariant distance and information measures. Physica A Stat. Mech. Appl. 547, 124391 (2020 c)

    Google Scholar 

  42. Brusco, M.J., Steinley, D.: A comparison of heuristic procedures for minimum within-cluster sums of squares partitioning. Psychometrika 72, 583–600 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Paolo Del Giudice .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Note

The current study has been developed within the current research P.R.I.N. Project 2022: “INSPIRE—Improving Nature-Smart Policies through Innovative Resilient Evaluations”, Grant number: 2022J7RWNF.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Del Giudice, F.P., Manganelli, B., De Paola, P., Tajani, F., Amato, F. (2024). An Analysis of the Airbnb Market: A Detailed Look at Four Italian Cities. In: Gervasi, O., Murgante, B., Garau, C., Taniar, D., C. Rocha, A.M.A., Faginas Lago, M.N. (eds) Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14822. Springer, Cham. https://doi.org/10.1007/978-3-031-65318-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-65318-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-65317-9

  • Online ISBN: 978-3-031-65318-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics