Skip to main content

A Literature Review on Bus Comfort On-Board

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2024 Workshops (ICCSA 2024)

Abstract

According to the UN’s 2030 Agenda, cities and human settlements aim to become inclusive, safe, resilient, and sustainable. In this context, cities are pivotal for social and economic development, serving as gathering places where everyone should enjoy a high standard of living and accessibility. Public transportation, particularly bus comfort on board, significantly influences the quality of urban transportation services. Measuring this comfort is essential for transportation providers to track, assess, and implement targeted improvements. Comfort is a complex concept influenced by factors like temperature, noise, vibration, acceleration, passenger load, and cleanliness.

The literature offers various approaches to measuring bus comfort, prompting this paper's review of existing research to establish a structured research base for future studies. Despite a wealth of literature on onboard bus comfort levels (OBCL), no methods yet establish graduated, dynamic comfort scales incorporating diverse passenger characteristics and real-time acceleration data. This gap prevents a comprehensive, real-time OBCL assessment that accurately reflects passenger experiences. Furthermore, extensive data collection is necessary to calibrate models and consolidate comfort scales effectively.

The insights from these studies help identify specific areas where comfort levels are inadequate, enabling transportation agencies to focus on targeted interventions for enhancing the passenger experience. While considerable progress has been made in understanding and measuring bus comfort, there remains a need for more sophisticated methodologies to develop comprehensive and dynamic comfort assessment tools aligned with the diverse needs of passengers and the dynamic nature of urban transportation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garau, C., Desogus, G., Annunziata, A., Mighela, F.: Mobility and health in the smart city 3.0: trends and innovations in Italian context. In: Smart Cities and Digital Transformation: Empowering Communities, Limitless Innovation, Sustainable Development and the Next Generation, pp. 105–127 (2023)

    Google Scholar 

  2. Dell’Olio, L., Ibeas, A., Cecin, P.: The quality of service desired by public transport users. Transp. Policy 18(1), 217–227 (2011)

    Article  Google Scholar 

  3. Shen, X., Feng, S., Li, Z., Hu, B.: Analysis of bus passenger comfort perception based on passenger load factor and in-vehicle time. Springer Plus 5(62), 1–10 (2016)

    Google Scholar 

  4. Eboli, L., Mazzulla, G.: A new customer satisfaction index for evaluating transit service quality. J. Public Transport. 12, 21–37 (2009)

    Article  Google Scholar 

  5. Roncoli, C., Chandakas, E., Kaparias, I.: Estimating on-board passenger comfort in public transport vehicles using incomplete automatic passenger counting data. Transp. Res. Part C Emerg. Technol. 146, 103963 (2023)

    Article  Google Scholar 

  6. Darsena, D., Gelli, G., Iudice, I., Verde, F.: Sensing technologies for crowd management, adaptation, and information dissemination in public transportation systems: a review. IEEE Sens. J. 23, 68–87 (2023)

    Article  Google Scholar 

  7. Sekulić, D., Dedović, V., Rusov, S., Šalinić, S., Obradović, A.: Analysis of vibration effects on the comfort of intercity bus users by an oscillatory model with ten degrees of freedom. Appl. Math. Model. 37(18), 8629–8644 (2013)

    Article  Google Scholar 

  8. Zhao, H., Guo, L.L., Zeng, X.Y.: Evaluation of bus vibration comfort based on passenger crowdsourcing mode. Math. Probl. Eng. 2016, 1–11 (2016)

    Google Scholar 

  9. Mechanical vibration and shock - Evaluation of human exposure to whole body vibration, ISO 2631, 2nd edn. (1997)

    Google Scholar 

  10. Lin, C.Y., Chen, L.J., Chen, Y.Y., Lee, W.C.: A comfort measuring system for public transportation systems using participatory phone sensing. In: Proceedings of Phone Sense, Zurich, Switzerland (2010)

    Google Scholar 

  11. Lin, C.Y., Chen, L.J.: TPE-CMS: a comfort measuring system for public bus service in Taipei City. In: IEEE International Conference on Computer Communications, Shanghai, China (2011)

    Google Scholar 

  12. Sekulić, D., Dedović, V., Rusov, S., Obradović, A., Šalinić, S.: Definition and determination of the bus oscillatory comfort zones. Int. J. Ind. Ergon. 53, 328–339 (2016)

    Article  Google Scholar 

  13. Sekulić, D., Rusov, S., Dedović, V., Šalinić, S., Mladenović, D., Ivković, I.: Analysis of bus users’ vibration exposure time. Int. J. Ind. Ergon. 65, 26–35 (2018)

    Article  Google Scholar 

  14. Sekulić, D., Mladenović, D.: Evaluation and analysis of vibration effects on bus users. In First International Conference on Transport for Today's Society, Bitola, Macedonia, 19–21 May 2016 (2016)

    Google Scholar 

  15. Oborne, D.J., Clarke, M.J.: The development of questionnaire surveys for the investigation of passenger comfort. Appl. Ergon. 6(2), 97–103 (1973)

    Article  Google Scholar 

  16. Zhang, K., Zhou, K., Zhang, F.: Evaluating bus transit performance of Chinese cities: developing an overall bus comfort model. Transp. Res. Part A 69, 105–112 (2014)

    Google Scholar 

  17. Pala, Ü.: Investigation of thermal comfort for bus passengers during a cooling test inside a climatic chamber. J. Polytech. 23, 547–555 (2020)

    Google Scholar 

  18. Yunus, F.A.N., et al.: Field measurement of air velocity and temperature factors that influence the thermal comfort in shuttle bus. J. Adv. Res. Fluid Mech. Therm. Sci. 101, 164–171 (2023)

    Google Scholar 

  19. Cigarini, F., Schminkel, P., Sonnekalb, M., Best, P., Göhlich, D.: Determination of improved climatic conditions for thermal comfort and energy efficiency in electric buses. Appl. Ergon. 105, 103856 (2022)

    Article  Google Scholar 

  20. Af Wahlberg, A.E.: Short-term effects of training in economical driving passenger comfort and driver acceleration behavior. Int. J. Ind. Ergon. 36, 151–163 (2006)

    Article  Google Scholar 

  21. Eboli, L., Mazzulla, G., Pungillo, G.: Measuring bus comfort levels by using acceleration instantaneous values. Transport. Res. Procedia 18, 27–34 (2016)

    Article  Google Scholar 

  22. Barabino, B., Eboli, L., Mazzulla, G., Mozzoni, S., Murru, R., Pungillo, G.: An innovative methodology to define the bus comfort level. Transport. Res. Procedia 41, 461–470 (2019)

    Article  Google Scholar 

  23. Meiping, Y., Wen, W.: Smartphone based research of measurement indexes related to bus riding comfort. J. Tongji Univ. 45(8), 1143–1149 (2017)

    Google Scholar 

  24. Barabino, B., Di Francesco, M.: Characterizing, measuring, and managing transit service quality. J. Adv. Transp. 50(5), 818–840 (2016)

    Article  Google Scholar 

  25. Karapetkov, S., Uzunov, H., Indrie, L., Zlatev, Z.: Driving comfort assistance system considering two sensors data. Acta Mech. Autom. 15, 164–168 (2021)

    Google Scholar 

  26. Hoberock, L.L.: A survey of longitudinal acceleration comfort studies in ground transportation vehicles. J. Dyn. Syst. Meas. Contr. 99(2), 76–84 (1977)

    Article  Google Scholar 

  27. Castellanos, J.C., Fruett, F.: Embedded system to evaluate the passenger comfort in public transportation based on dynamical vehicle behavior with user’s feedback. Measurement 47, 442–451 (2014)

    Article  Google Scholar 

  28. Nakanishi, Y.J.: Bus Performance Indicators. Transp. Res. Rec. 1571, 3–13 (1997)

    Google Scholar 

  29. Trompet, M., Liu, X., Graham, D.J.: Development of a key performance indicator to compare regularity of service between urban bus operators. Transp. Res. Rec. 2216, 33–41 (2011)

    Article  Google Scholar 

  30. Transportation—Logistics and Services. European Standard EN 13816: Public passenger transport –Service quality definition, targeting and measurement, EN 13816 (2002)

    Google Scholar 

  31. Kittelson & Associates Inc. Parsons Brinckerhoff, Inc, KFH Group, Inc, Texas A&M Transportation Institute, Transit Capacity and Quality of Service Manual – 3rd edn. TRB, Washington, DC, Arup, (2013

    Google Scholar 

  32. Nguyen, T., Nguyen-Phuoc, D.Q., Wong, Y.D.: Developing artificial neural networks to estimate real-time onboard bus ride comfort. Neural Comput. Appl. 33, 5287–5299 (2021)

    Article  Google Scholar 

  33. Heißing, B., Ersoy, M.: Ride comfort and NVH. In: Heißing, B., Ersoy, M. (eds.) Chassis Handbook, pp. 421–448. Vieweg+Teubner, Wiesbaden (2011)

    Chapter  Google Scholar 

  34. Silva, M.C.G.D.: Measurements of comfort in vehicles. Meas. Sci. Technol. 13, R41–R60 (2002)

    Article  Google Scholar 

  35. Faris, W.F., Ben Lahcene, Z., Hasbullah, F.: Ride quality of passenger cars: an overview of the research trends. Int. J. Veh. Noise Vib. 8(3), 185–199 (2012)

    Article  Google Scholar 

  36. Kittelson & Associates Inc. KFH Group Inc., Parsons Brinckerhoff Quade & Douglass Inc., K. H. Zaworski, Transit Capacity and Quality of Service Manual-2nd edn. TCRP, Washington, D.C., TRB Report 100 (2003)

    Google Scholar 

  37. Kumar, C.V., Basu, D., Maitra, B.: Modeling generalized cost of travel for rural bus users: a case study. J. Public Transp. 7(2), 59–72 (2004)

    Article  Google Scholar 

  38. Vovsha, P., Marcelo, G.S.O., William, D.: Statistical analysis of transit user preferences including in-vehicle crowding and service reliability. In: TRB, Annual Meeting, Washington, DC (2014)

    Google Scholar 

  39. Więcek, P., Kubek, D., Aleksandrowicz, J.H., Stróżek, A.: Framework for onboard bus comfort level predictions using the Markov chain concept. Symmetry 11, 755 (2019)

    Article  Google Scholar 

  40. Zhou, Y., Wang, P., Qin, M., Zhao, M., Zheng, S.: Bus load factor analysis based on smart card data and survey data. In: IEEE International Intelligent Transportation Systems Conference (ITSC) (2021)

    Google Scholar 

  41. Volodkin, P., Ryzhova, A., Shirokorad, O., Arkhipov, S.: Assessment of the quality of transport service for vladivostok city population. IOP Conf. Ser. Earth Environ. Sci. 988, 022005 (2022)

    Article  Google Scholar 

  42. Coni, M.: Livelli di rumore e vibrazioni indotte all’interno di un mezzo da due diversi tipi di pavimentazione stradale. Le Strade 1301, 289–295 (1994)

    Google Scholar 

  43. Coni, M.: Analisi sperimentale e simulazione numerica del campo acustico e vibrazionale di un mezzo per il trasporto pubblico urbano, PhD dissertation, National Library Rome and Florence (1995)

    Google Scholar 

  44. Strandemar, K.: On objective measures for ride comfort evaluation, Ph.D dissertation, Royal Institute of Technology (KTH), Stockholm (2005)

    Google Scholar 

  45. Railway applications: ride comfort for passengers – measurement and evaluation, EN 12299 (2009)

    Google Scholar 

  46. Maternini, G., Cadei, M.: A comfort scale for standing bus passengers in relation to certain road characteristic. Transport. Lett. 6(3), 136–141 (2014)

    Article  Google Scholar 

  47. Barabino, B., Coni, M., Olivo, A., Pungillo, G., Rassu, N.: Standing passenger comfort: a new scale for evaluating the real-time driving style of bus transit services. IEEE Trans. Intell. Transp. Syst. 20, 4665–4678 (2019)

    Article  Google Scholar 

  48. Barabino, B., Eboli, L., Mazzulla, G., Mozzoni, S., Murru, R., Pungillo, G.: An innovative methodology to define the bus comfort level. Transp. Res. Procedia 41, 461–470 (2019)

    Article  Google Scholar 

  49. Chin, H.-C., Pang, X., Wang, Z.: Analysis of bus ride comfort using smartphone sensor data Analysis of bus ride comfort using smartphone sensor data. Comput. Mater. Contin. 60, 455–463 (2019)

    Google Scholar 

  50. Nguyen, T., Nguyen, N., Dinh, N., Lechner, B., Wong, Y.D.: Insight into the lateral ride discomfort thresholds of young-adult bus passengers at multiple postures: case of Singapore. Case Stud. Transp. Policy 7, 617–627 (2019)

    Article  Google Scholar 

  51. Wang, G., Zhang, J., Kong, X.: Study on passenger comfort based on human–bus–road coupled vibration. Appl. Sci. 10, 3254 (2020)

    Article  Google Scholar 

  52. Coni, M., et al.: On-board comfort of different age passengers and bus-lane characteristics. In: Gervasi, O., et al. (eds.) Computational Science and Its Applications – ICCSA 2020. Lecture Notes in Computer Science, pp. 658–672. Springer International Publishing, Cham (2020)

    Chapter  Google Scholar 

  53. Fazio, M., Le Pira, M., Inturri, G., Ignaccolo, M.: Bus rapid transit vs. metro. monitoring on-board comfort of competing transit services via sensors. In: 2020 Forum on Integrated and Sustainable Transportation Systems (FISTS), pp. 292–297 (2020)

    Google Scholar 

  54. Zeng, L., et al.: An LSTM-based driving operation suggestion method for riding comfort-oriented critical zone. J. Ambient. Intell. Humaniz. Comput. 14, 755–771 (2023)

    Article  Google Scholar 

  55. Services de Transport Urbain de Voyageurs. Règlement de certification générique, AFNOR Certification, NF 281, Saint-Denis la Plaine Cedex – France. Technical report (2005)

    Google Scholar 

  56. Services de Transport Urbain de Voyageurs. Règlement de certification spécifiques, AFNOR Certification. NF 286, Saint-Denis la Plaine Cedex — France, Technical report (2005)

    Google Scholar 

  57. Barabino, B., Deiana, E., Tilocca, P.: Measuring service quality in urban bus transport: a modified SERVQUAL approach. Int. J. Qual. Serv. Sci. 4(3), 238–252 (2012)

    Google Scholar 

  58. Prashanth, A.S., Saran, V.H., Harsha, S.P.: Study of subjective responses on ride comfort in public transport Uttarakhand State buses. In: Proceedings of 1st International 16th National Conference on Machine Mechanics (iNaCoMM), Roorkee, India, pp. 1–5 (2013)

    Google Scholar 

  59. Islam, R.: Measuring customer’s satisfaction on bus transportation. Am. J. Econ. Bus. Adm. 6, 34–41 (2014)

    Google Scholar 

  60. Anik, M.A.H., Hossain, M., Raihan, M.A., Ahmed, S., Rashid, M.M.: Assessing public bus comfort perception of bus passengers in Dhaka, Bangladesh. In: 99th Annual Meeting of Transportation Research Board, Washington, D.C., USA (2020)

    Google Scholar 

  61. Deb, S., Ali, A.M., Das, D.: Service quality estimation and improvement plan of bus service: a perception and expectation based analysis. Case Stud. Transp. Policy 10, 1775–1789 (2022)

    Article  Google Scholar 

  62. Zahra, K., Darma, Y., Salmannur, A., Sugiarto, S.: Analysis of service quality of trans Koetaradja electric feeder bus using importance performance analysis. In: 11th Annual International Conference (AIC) 2021: On Sciences and Engineering, Banda Aceh, Indonesia, p. 030006 (2023)

    Google Scholar 

  63. Maltinti, F., Rassu, N., Coni, M., Garau, C., Pinna, F., Devoto, R., Barabino, B.: Vulnerable users and public transport service: analysis on expected and perceived quality data. In: Gervasi, O., et al. (eds.) Computational Science and Its Applications – ICCSA 2020: 20th International Conference, Cagliari, Italy, July 1–4, 2020, Proceedings, Part VII, pp. 673–689. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_49

    Chapter  Google Scholar 

  64. de Oña, J., de Oña, R.: Quality of service in public transport based on customer satisfaction surveys: a review and assessment of methodological approaches. Transp. Sci. 49(3), 605–622 (2014)

    Article  Google Scholar 

  65. Oboknb, D.J., Clarke, M.J.: The development of questionnaire surveys for the investigation of passenger comfort. Ergonomics 6(2), 97–103 (1973)

    Google Scholar 

  66. Preston, C., Colman, A.M.: Optimal number of response categories in rating scales: reliability, validity, discriminating power, and respondent preferences. Acta Psychol. (Amst)Amst) 104, 1–15 (2000)

    Article  Google Scholar 

  67. SAE. J1060_201405 Subjective Rating Scale for Evaluation of Noise and Ride Comfort Characteristics Related to Motor Vehicle (No. J1060_201405) (2014)

    Google Scholar 

Download references

Acknowledgments

This study is supported by the MIUR (Ministry of Education, Universities and Research [Italy]) through the project entitled: SMART3R-FLITS: SMART Transport for TRavellers and Freight Logistics Integration Towards Sustainability (Project protocol: 2022J38SR9; CUP Code: F53D23005630006), financed with the PRIN 2022 (Research Projects of National Relevance) programme; and project e.INS – Ecosystem of Innovation for Next Generation Sardinia” funded by the Italian Ministry of University and Research (MIUR) under the Next-Generation EU Programme (National Recovery and Resilience Plan – PNRR, M4C2, INVESTMENT 1.5 – DD 1056 of 23/06/2022 , ECS00000038)- SPOKE 8 - CUP F53C22000430001. We authorize the MIUR to reproduce and distribute reprints for Governmental purposes, notwithstanding any copyright notations thereon. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors, and do not necessarily reflect the views of the MIUR. Moreover, the authors are grateful CTM SpA, which made its data available for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Maltinti .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Author Contributions

Conceptualization: Francesca Maltinti, Nicoletta Rassu, Mauro Coni, Benedetto Barabino. Methodology and formal analysis: Francesca Maltinti, Nicoletta Rassu, Benedetto Barabino, Roberto Ventura, Mauro Coni. Introduction and literature review: Francesca Maltinti, Nicoletta Rassu, James Rombi. Writing-original draft preparation: Francesca Maltinti, Nicoletta Rassu, Benedetto Barabino. Writing review and editing: Francesca Maltinti, James Rombi. Visualization, all. All authors have read and agreed to the published version of the manuscript.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maltinti, F., Coni, M., Rombi, J., Barabino, B., Ventura, R., Rassu, N. (2024). A Literature Review on Bus Comfort On-Board. In: Gervasi, O., Murgante, B., Garau, C., Taniar, D., C. Rocha, A.M.A., Faginas Lago, M.N. (eds) Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14824. Springer, Cham. https://doi.org/10.1007/978-3-031-65332-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-65332-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-65331-5

  • Online ISBN: 978-3-031-65332-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics