Abstract
Recently, abstract systems theory has been used as a meta-theory for learning theory and machine learning in order to model learning systems directly as formal, mathematical objects. This effort was inspired by a desire to treat learning in terms of systems, as opposed to the more common practice of treating learning in terms of problems or problem-solving, by modeling learning as a relation on sets, that is, as an abstract system. Such a relational view of learning, however, is heavily structural. It neglects key behavioral aspects typically represented using operators and process algebra. This paper substantiates and motivates the development of a process algebra for learning systems in order to address this gap. In summary, this paper considers and distinguishes formal representations of learning as a problem, as a system, as an operator, and as a process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bakirtzis, G., Fleming, C.H., Vasilakopoulou, C.: Categorical semantics of cyber-physical systems theory. ACM Trans. Cyber Phys. Syst. 5(3), 1–32 (2021)
Belenchia, M., Thórisson, K.R., Eberding, L.M., Sheikhlar, A.: Elements of task theory. In: Goertzel, B., Iklé, M., Potapov, A. (eds.) AGI 2021. LNCS (LNAI), vol. 13154, pp. 19–29. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93758-4_3
Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. Adv. Neural Inform. Proc. Syst. 19 (2006)
Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48 (2009)
Bommasani, R., et al.: On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258 (2021)
Chollet, F.: On the measure of intelligence. arXiv preprint arXiv:1911.01547 (2019)
Cody, T.: Mesarovician abstract learning systems. In: Goertzel, B., Iklé, M., Potapov, A. (eds.) AGI 2021. LNCS (LNAI), vol. 13154, pp. 55–64. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93758-4_7
Cody, T.: Homomorphisms between transfer, multi-task, and meta-learning systems. In: Goertzel, B., Iklé, M., Potapov, A., Ponomaryov, D. (eds.) AGI 2022. LNCS (LNAI), pp. 199–208. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-19907-3_19
Cody, T., Adams, S., Beling, P.: Motivating a systems theory of AI. Insight 23(1), 37–40 (2020)
Cody, T., Adams, S., Beling, P.A.: A systems theoretic perspective on transfer learning. In: 2019 IEEE International Systems Conference (SysCon), pp. 1–7. IEEE (2019)
Cody, T., Beling, P.A.: A systems theory of transfer learning. IEEE Syst. J. 17(1), 26–37 (2023)
De Nicola, R.: Process Algebras. In: Padua, D. (eds) Encyclopedia of Parallel Computing. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-09766-4_450
Gilmore, S., Hillston, J.: The PEPA workbench: a tool to support a process algebra-based approach to performance modelling. In: Haring, G., Kotsis, G. (eds.) TOOLS 1994. LNCS, vol. 794, pp. 353–368. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58021-2_20
Meredith, L.G., Radestock, M.: A reflective higher-order calculus. Electron. Notes Theoret. Comput. Sci. 141(5), 49–67 (2005)
Mesarovic, M.D., Takahara, Y. (eds.): Abstract Systems Theory. Springer, Berlin, Heidelberg (1989)
Mitchell, T., et al.: Never-ending learning. Commun. ACM 61(5), 103–115 (2018)
Nivel, E., et al.: Bounded seed-AGI. In: Goertzel, B., Orseau, L., Snaider, J. (eds.) AGI 2014. LNCS (LNAI), vol. 8598, pp. 85–96. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09274-4_9
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)
du Preez, A., Beling, P., Cody, T.: A systems theoretic approach to online machine learning. In: 2024 IEEE International Systems Conference (SysCon), pp. 1–8. IEEE (2024)
Thórisson, K.R.: A new constructivist AI: from manual methods to self-constructive systems. In: Wang, P., Goertzel, B. (eds.) Theoretical Foundations of Artificial General Intelligence, pp. 145–171. Atlantis Press, Paris (2012). https://doi.org/10.2991/978-94-91216-62-6_9
Thórisson, K.R.: Seed-programmed autonomous general learning. In: International Workshop on Self-Supervised Learning, pp. 32–61. PMLR (2020)
Thórisson, K.R., Bieger, J., Thorarensen, T., Sigurðardóttir, J.S., Steunebrink, B.R.: Why artificial intelligence needs a task theory. In: Steunebrink, B., Wang, P., Goertzel, B. (eds.) AGI -2016. LNCS (LNAI), vol. 9782, pp. 118–128. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41649-6_12
Wang, Y.: Using process algebra to describe human and software behaviors. Brain Mind 4, 199–213 (2003)
Wang, Y.: Deductive semantics of RTPA. IJCINI 2(2), 95–121 (2008)
Weinshall, D., Cohen, G., Amir, D.: Curriculum learning by transfer learning: theory and experiments with deep networks. In: International Conference on Machine Learning, pp. 5238–5246. PMLR (2018)
Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3, 1–40 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cody, T., Beling, P.A. (2024). Towards a Process Algebra and Operator Theory for Learning System Objects. In: Thórisson, K.R., Isaev, P., Sheikhlar, A. (eds) Artificial General Intelligence. AGI 2024. Lecture Notes in Computer Science(), vol 14951. Springer, Cham. https://doi.org/10.1007/978-3-031-65572-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-65572-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-65571-5
Online ISBN: 978-3-031-65572-2
eBook Packages: Computer ScienceComputer Science (R0)