Abstract
DRSs (Decision Rule Systems) and DTs (Decision Trees) are well known as classification tools, knowledge representation methods, and algorithms. Their clarity and ease of interpretation in data analysis are widely recognized. The study of the relationship between DTs and DRSs is an important problem in computer science. There are established methods for converting DTs to DRSs. In this work, we explore the inverse transformation problem, which is challenging. Rather than constructing a full DT that answers the tasks on DRSs, our research provides a greedy algorithm that simulates the functioning of a DT for an input array of feature values.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdelhalim, A., Traoré, I., Nakkabi, Y.: Creating decision trees from rules using RBDT-1. Comput. Intell. 32(2), 216–239 (2016)
Abdelhalim, A., Traore, I., Sayed, B.: RBDT-1: a new rule-based decision tree generation technique. In: Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 108–121. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04985-9_12
AbouEisha, H., Amin, T., Chikalov, I., Hussain, S., Moshkov, M.: Extensions of Dynamic Programming for Combinatorial Optimization and Data Mining. ISRL, vol. 146. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91839-6
Alsolami, F., Azad, M., Chikalov, I., Moshkov, M.: Decision and Inhibitory Trees and Rules for Decision Tables with Many-valued Decisions. ISRL, vol. 156. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-12854-8
Blum, M., Impagliazzo, R.: Generic oracles and oracle classes (extended abstract). In: 28th Annual Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27–29 October 1987, pp. 118–126. IEEE Computer Society (1987)
Boros, E., Hammer, P.L., Ibaraki, T., Kogan, A.: Logical analysis of numerical data. Math. Program. 79, 163–190 (1997)
Boros, E., Hammer, P.L., Ibaraki, T., Kogan, A., Mayoraz, E., Muchnik, I.B.: An implementation of logical analysis of data. IEEE Trans. Knowl. Data Eng. 12(2), 292–306 (2000)
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth and Brooks (1984)
Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a survey. Theor. Comput. Sci. 288(1), 21–43 (2002)
Cao, H.E.C., Sarlin, R., Jung, A.: Learning explainable decision rules via maximum satisfiability. IEEE Access 8, 218180–218185 (2020)
Chikalov, I., Lozin, V.V., Lozina, I., Moshkov, M., Nguyen, H.S., Skowron, A., Zielosko, B.: Three Approaches to Data Analysis - Test Theory, Rough Sets and Logical Analysis of Data. Intelligent Systems Reference Library, vol. 41. Springer, Cham (2013). https://doi.org/10.1007/978-3-642-28667-4
Durdymyradov, K., Moshkov, M.: Construction of decision trees and acyclic decision graphs from decision rule systems. arXiv:2305.01721 [cs.AI] (2023)
Durdymyradov, K., Moshkov, M.: Bounds on depth of decision trees derived from decision rule systems with discrete attributes. Ann. Math. Artif. Intell. (2024). https://doi.org/10.1007/s10472-024-09933-x
Durdymyradov, K., Moshkov, M.: Greedy algorithm for inference of decision trees from decision rule systems. arXiv:2401.06793 [cs.AI] (2024)
Fürnkranz, J., Gamberger, D., Lavrac, N.: Foundations of Rule Learning. Cognitive Technologies, Springer, Cham (2012). https://doi.org/10.1007/978-3-540-75197-7
Gilmore, E., Estivill-Castro, V., Hexel, R.: More interpretable decision trees. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds.) HAIS 2021. LNCS (LNAI), vol. 12886, pp. 280–292. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86271-8_24
Hartmanis, J., Hemachandra, L.A.: One-way functions, robustness, and the non-isomorphism of NP-complete sets. In: Proceedings of the Second Annual Conference on Structure in Complexity Theory, Cornell University, Ithaca, New York, USA, 16–19 June 1987. IEEE Computer Society (1987)
Imam, I.F., Michalski, R.S.: Learning decision trees from decision rules: a method and initial results from a comparative study. J. Intell. Inf. Syst. 2(3), 279–304 (1993)
Imam, I.F., Michalski, R.S.: Should decision trees be learned from examples or from decision rules? In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 395–404. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56804-2_37
Imam, I.F., Michalski, R.S.: Learning for decision making: the FRD approach and a comparative study. In: Raś, Z.W., Michalewicz, M. (eds.) ISMIS 1996. LNCS, vol. 1079, pp. 428–437. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61286-6_167
Kaufman, K.A., Michalski, R.S., Pietrzykowski, J., Wojtusiak, J.: An integrated multi-task inductive database VINLEN: initial implementation and early results. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 116–133. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75549-4_8
Michalski, R.S., Imam, I.F.: Learning problem-oriented decision structures from decision rules: the AQDT-2 system. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 416–426. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58495-1_42
Michalski, R.S., Imam, I.F.: On learning decision structures. Fundam. Informaticae 31(1), 49–64 (1997)
Molnar, C.: Interpretable Machine Learning. A Guide for Making Black Box Models Explainable, 2nd edn. (2022). https://christophm.github.io/interpretable-ml-book/
Moshkov, M.J.: Comparative analysis of deterministic and nondeterministic decision tree complexity local approach. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 125–143. Springer, Heidelberg (2005). https://doi.org/10.1007/11574798_7
Moshkov, M.J.: Time complexity of decision trees. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 244–459. Springer, Heidelberg (2005). https://doi.org/10.1007/11427834_12
Moshkov, M.: About the depth of decision trees computing Boolean functions. Fundam. Informaticae 22(3), 203–215 (1995)
Moshkov, M.: Comparative analysis of deterministic and nondeterministic decision tree complexity. Global approach. Fundam. Informaticae 25(2), 201–214 (1996)
Moshkov, M.: Some relationships between decision trees and decision rule systems. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 499–505. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-69115-4_68
Moshkov, M.: Deterministic and nondeterministic decision trees for rough computing. Fundam. Informaticae 41(3), 301–311 (2000)
Moshkov, M.: On transformation of decision rule systems into decision trees. In: Proceedings of the Seventh International Workshop Discrete Mathematics and its Applications, Moscow, Russia, 29 January–2 February 2001, Part 1, pp. 21–26. Center for Applied Investigations of Faculty of Mathematics and Mechanics, Moscow State University (2001). (in Russian)
Moshkov, M.: Classification of infinite information systems depending on complexity of decision trees and decision rule systems. Fundam. Informaticae 54(4), 345–368 (2003)
Moshkov, M.: Comparative Analysis of Deterministic and Nondeterministic Decision Trees. ISRL, vol. 179. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41728-4
Moshkov, M., Piliszczuk, M., Zielosko, B.: Partial Covers, Reducts and Decision Rules in Rough Sets - Theory and Applications. Studies in Computational Intelligence, vol. 145. Springer, Cham (2008). https://doi.org/10.1007/978-3-540-69029-0
Moshkov, M., Zielosko, B.: Combinatorial Machine Learning - A Rough Set Approach. Studies in Computational Intelligence, vol. 360. Springer, Cham (2011). https://doi.org/10.1007/978-3-642-20995-6
Pawlak, Z.: Rough Sets - Theoretical Aspects of Reasoning about Data, Theory and Decision Library: Series D, vol. 9. Kluwer (1991)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)
Quinlan, J.R.: Generating production rules from decision trees. In: McDermott, J.P. (ed.) Proceedings of the 10th International Joint Conference on Artificial Intelligence. Milan, Italy, 23–28 August 1987, pp. 304–307. Morgan Kaufmann (1987)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
Quinlan, J.R.: Simplifying decision trees. Int. J. Hum Comput Stud. 51(2), 497–510 (1999)
Rokach, L., Maimon, O.: Data Mining with Decision Trees - Theory and Applications, Series in Machine Perception and Artificial Intelligence, vol. 69. World Scientific (2007)
Silva, A., Gombolay, M.C., Killian, T.W., Jimenez, I.D.J., Son, S.: Optimization methods for interpretable differentiable decision trees applied to reinforcement learning. In: Chiappa, S., Calandra, R. (eds.) The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020, Palermo, Sicily, Italy, 26–28 August 2020. Proceedings of Machine Learning Research, vol. 108, pp. 1855–1865. PMLR, Online (2020)
Szydlo, T., Sniezynski, B., Michalski, R.S.: A rules-to-trees conversion in the inductive database system VINLEN. In: Klopotek, M.A., Wierzchon, S.T., Trojanowski, K. (eds.) Intelligent Information Processing and Web Mining Advances in Soft Computing, vol. 31, pp. 496–500. Springer, Cham (2005). https://doi.org/10.1007/3-540-32392-9_60
Tardos, G.: Query complexity, or why is it difficult to separate \({NP}^{A}\cap co{NP}^{A}\) from \({P}^{A}\) by random oracles \({A}\)? Combinatorica 9(4), 385–392 (1989)
Acknowledgements
Research reported in this publication was supported by King Abdullah University of Science and Technology (KAUST).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Durdymyradov, K., Moshkov, M. (2024). Simulating Functioning of Decision Trees for Tasks on Decision Rule Systems. In: Hu, M., Cornelis, C., Zhang, Y., Lingras, P., Ślęzak, D., Yao, J. (eds) Rough Sets. IJCRS 2024. Lecture Notes in Computer Science(), vol 14839. Springer, Cham. https://doi.org/10.1007/978-3-031-65665-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-65665-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-65664-4
Online ISBN: 978-3-031-65665-1
eBook Packages: Computer ScienceComputer Science (R0)