Skip to main content

Consideration of Detecting Data and Functional Dependency in Tabular Data with Missing Values by the Obtained Rules

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14839))

Included in the following conference series:

  • 236 Accesses

Abstract

Functional dependency is an essential concept between attributes in relational algebra and tabular data analysis, and it is applied to the decomposition of tabular data. On the other hand, data dependency is a concept between attribute values. Functional dependency is usually given, and data dependency is often recognized after data analysis. We may recognize the hidden functional dependency as a particular case of data dependency. In this paper, we apply the rules obtained by the NIS-Apriori-based rule generator, which was implemented to handle rules from tabular and tabular data with missing values. We detect some candidates CONs of condition attributes that affect the decision attribute Dec using the obtained rules. We then apply the same rule generator specifying the detected one CON to determine the actual degree of dependency. This step eliminates the need to enumerate all CONs to understand dependencies and can handle extended dependencies for DIS and NIS. A running example using the implemented tools is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the VLDB 1994, Morgan Kaufmann, pp. 487–499 (1994)

    Google Scholar 

  2. Berti-Equille, L., Harmouch, H., Naumann, F., Novelli, N., Thirumuruganathan, S.: Discovery of genuine functional dependencies from relational data with missing values. Proc. VLDB 2018, 880–892 (2018)

    Article  Google Scholar 

  3. Breve, B., Caruccio, L., Deufemia, V., Polese, G.: RENUVER: a missing value imputation algorithm based on relaxed functional dependencies. Proc. EDBT 2022, 52–64 (2022)

    Google Scholar 

  4. Frank, A., Asuncion, A.: UCI machine learning repository, Irvine, CA: University of California, School of Information and Computer Science. http://mlearn.ics.uci.edu/MLRepository.html. Accessed 7 Jan 2022

  5. Functional dependency, Wikipedia. https://en.wikipedia.org/wiki/Functional_dependency. Accessed 3 Apr 2022

  6. Grzymała-Busse, J.W., Werbrouck, P.: On the best search method in the LEM1 and LEM2 algorithms. Incomplete Inf. Rough Set Anal. Stud. Fuzziness Soft Comput. 13, 75–91 (1998)

    Article  Google Scholar 

  7. Huhtala, Y., Karkkainen, J., Porkka, P., Toivonen, H.: TANE: an efficient algorithm for discovering functional and approximate dependencies. Comput. J. 42(2), 100–111 (1999)

    Article  Google Scholar 

  8. Orłowska, E., Pawlak, Z.: Representation of nondeterministic information. Theoret. Comput. Sci. 29(1–2), 27–39 (1984)

    Article  MathSciNet  Google Scholar 

  9. Pawlak, Z.: Rough Sets. Kluwer Academic Publishers (1991)

    Google Scholar 

  10. Sakai, H., Nakata, M., Watada, J.: NIS-Apriori-based rule generation with three-way decisions and its application system in SQL. Inf. Sci. 507, 755–771 (2020)

    Article  MathSciNet  Google Scholar 

  11. Jian, Z., Sakai, H., Ohwa, T., Shen, K.-Y., Nakata, M.: An adjusted apriori algorithm to itemsets defined by tables and an improved rule generator with three-way decisions. In: Bello, R., Miao, D., Falcon, R., Nakata, M., Rosete, A., Ciucci, D. (eds.) IJCRS 2020. LNCS (LNAI), vol. 12179, pp. 95–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52705-1_7

    Chapter  Google Scholar 

  12. Sakai, H.: Execution logs by RNIA software tools. http://www.mns.kyutech.ac.jp/~sakai/RNIA. Accessed 3 Jan 2023

  13. Sakai, H.: Studies on association rule-based table data analysis and its applications - new mathematics for data sciences -. J. Comb. Inf. Syst. Sci. 46(1–4), 115–230 (2021)

    MathSciNet  Google Scholar 

  14. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (eds.) Intelligent Decision Support -. Handbook of Advances and Applications of the Rough Set Theory, Kluwer Academic Publishers, pp. 331–362. Springer, Dordrecht (1992). https://doi.org/10.1007/978-94-015-7975-9_21

  15. Ślęzak, D., Sakai, H.: Automatic extraction of decision rules from non-deterministic data systems: theoretical foundations and SQL-based implementation. In: Ślęzak, D., Kim, T., Zhang, Y., Ma, J., Chung, K. (eds.) DTA 2009. CCIS, vol. 64, pp. 151–162. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10583-8_18

    Chapter  Google Scholar 

  16. Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46(1), 39–59 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers for their helpful comments. Part of this work is supported by JSPS (Japan Society for the Promotion of Science) KAKENHI Grant Number JP20K11954.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Sakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sakai, H., Nakata, M., Ślęzak, D., Watada, J. (2024). Consideration of Detecting Data and Functional Dependency in Tabular Data with Missing Values by the Obtained Rules. In: Hu, M., Cornelis, C., Zhang, Y., Lingras, P., Ślęzak, D., Yao, J. (eds) Rough Sets. IJCRS 2024. Lecture Notes in Computer Science(), vol 14839. Springer, Cham. https://doi.org/10.1007/978-3-031-65665-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-65665-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-65664-4

  • Online ISBN: 978-3-031-65665-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics