Abstract
Functional dependency is an essential concept between attributes in relational algebra and tabular data analysis, and it is applied to the decomposition of tabular data. On the other hand, data dependency is a concept between attribute values. Functional dependency is usually given, and data dependency is often recognized after data analysis. We may recognize the hidden functional dependency as a particular case of data dependency. In this paper, we apply the rules obtained by the NIS-Apriori-based rule generator, which was implemented to handle rules from tabular and tabular data with missing values. We detect some candidates CONs of condition attributes that affect the decision attribute Dec using the obtained rules. We then apply the same rule generator specifying the detected one CON to determine the actual degree of dependency. This step eliminates the need to enumerate all CONs to understand dependencies and can handle extended dependencies for DIS and NIS. A running example using the implemented tools is also provided.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the VLDB 1994, Morgan Kaufmann, pp. 487–499 (1994)
Berti-Equille, L., Harmouch, H., Naumann, F., Novelli, N., Thirumuruganathan, S.: Discovery of genuine functional dependencies from relational data with missing values. Proc. VLDB 2018, 880–892 (2018)
Breve, B., Caruccio, L., Deufemia, V., Polese, G.: RENUVER: a missing value imputation algorithm based on relaxed functional dependencies. Proc. EDBT 2022, 52–64 (2022)
Frank, A., Asuncion, A.: UCI machine learning repository, Irvine, CA: University of California, School of Information and Computer Science. http://mlearn.ics.uci.edu/MLRepository.html. Accessed 7 Jan 2022
Functional dependency, Wikipedia. https://en.wikipedia.org/wiki/Functional_dependency. Accessed 3 Apr 2022
Grzymała-Busse, J.W., Werbrouck, P.: On the best search method in the LEM1 and LEM2 algorithms. Incomplete Inf. Rough Set Anal. Stud. Fuzziness Soft Comput. 13, 75–91 (1998)
Huhtala, Y., Karkkainen, J., Porkka, P., Toivonen, H.: TANE: an efficient algorithm for discovering functional and approximate dependencies. Comput. J. 42(2), 100–111 (1999)
Orłowska, E., Pawlak, Z.: Representation of nondeterministic information. Theoret. Comput. Sci. 29(1–2), 27–39 (1984)
Pawlak, Z.: Rough Sets. Kluwer Academic Publishers (1991)
Sakai, H., Nakata, M., Watada, J.: NIS-Apriori-based rule generation with three-way decisions and its application system in SQL. Inf. Sci. 507, 755–771 (2020)
Jian, Z., Sakai, H., Ohwa, T., Shen, K.-Y., Nakata, M.: An adjusted apriori algorithm to itemsets defined by tables and an improved rule generator with three-way decisions. In: Bello, R., Miao, D., Falcon, R., Nakata, M., Rosete, A., Ciucci, D. (eds.) IJCRS 2020. LNCS (LNAI), vol. 12179, pp. 95–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52705-1_7
Sakai, H.: Execution logs by RNIA software tools. http://www.mns.kyutech.ac.jp/~sakai/RNIA. Accessed 3 Jan 2023
Sakai, H.: Studies on association rule-based table data analysis and its applications - new mathematics for data sciences -. J. Comb. Inf. Syst. Sci. 46(1–4), 115–230 (2021)
Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (eds.) Intelligent Decision Support -. Handbook of Advances and Applications of the Rough Set Theory, Kluwer Academic Publishers, pp. 331–362. Springer, Dordrecht (1992). https://doi.org/10.1007/978-94-015-7975-9_21
Ślęzak, D., Sakai, H.: Automatic extraction of decision rules from non-deterministic data systems: theoretical foundations and SQL-based implementation. In: Ślęzak, D., Kim, T., Zhang, Y., Ma, J., Chung, K. (eds.) DTA 2009. CCIS, vol. 64, pp. 151–162. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10583-8_18
Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46(1), 39–59 (1993)
Acknowledgments
The authors thank the reviewers for their helpful comments. Part of this work is supported by JSPS (Japan Society for the Promotion of Science) KAKENHI Grant Number JP20K11954.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sakai, H., Nakata, M., Ślęzak, D., Watada, J. (2024). Consideration of Detecting Data and Functional Dependency in Tabular Data with Missing Values by the Obtained Rules. In: Hu, M., Cornelis, C., Zhang, Y., Lingras, P., Ślęzak, D., Yao, J. (eds) Rough Sets. IJCRS 2024. Lecture Notes in Computer Science(), vol 14839. Springer, Cham. https://doi.org/10.1007/978-3-031-65665-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-65665-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-65664-4
Online ISBN: 978-3-031-65665-1
eBook Packages: Computer ScienceComputer Science (R0)