Skip to main content

Three-Way Decision of Granular-Ball Rough Sets Based on Fuzziness

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14840))

Included in the following conference series:

  • 329 Accesses

Abstract

Granular-ball computing (GBC) proposed by Xia adaptively generates a different neighborhood for each object, resulting in greater generality and flexibility. Moreover, GBC greatly improves the efficiency by replacing point input with granular-ball. However, traditional granular-ball classifiers may lead to risky classification on uncertain cases. In this paper, we introduce three-way decision (3WD) into GBC to construct a novel three-way decision of granular-ball rough sets (3WD-GBRS) from the perspective of uncertainty. This helps to construct reasonable multi-granularity spaces for handling complex decision problems with uncertainty. 3WD-GBRS is constructed in a data-driven method based on fuzziness, which avoids the subjective definition of certain risk parameters when calculating the threshold pairs. We further analyze the fuzziness loss of multilevel decision result in 3WD-GBRS. Extensive comparative experiments are conducted with 3 state-of-the-art GB-based classifiers and 1 classical machine learning classifiers on 6 public benchmark datasets. The results show that 3WD-GBRS almost outperforms other comparison methods in term of effectiveness and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90(2), 111–127 (1997)

    Article  MathSciNet  Google Scholar 

  2. Pedrycz, W., Homenda, W.: Building the fundamentals of granular computing: a principle of justifiable granularity. Appl. Soft Comput. 13(10), 4209–4218 (2013)

    Article  Google Scholar 

  3. Wang, G.Y., Yang, J., Xu, J.: Granular computing: from granularity optimization to multi-granularity joint problem solving. Granular Comput. 2, 105–120 (2017)

    Article  Google Scholar 

  4. Yao, Y.Y.: Three-way granular computing, rough sets, and formal concept analysis. Int. J. Approximate Reasoning 116, 106–125 (2020)

    Article  MathSciNet  Google Scholar 

  5. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    Article  Google Scholar 

  6. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  7. Zhang, L., Zhang, B.: The quotient space theory of problem solving. Fund. Inform. 59(2–3), 287–298 (2004)

    MathSciNet  Google Scholar 

  8. Hu, Q.H., Yu, D.R., Xie, Z.X.: Neighborhood classifiers. Expert Syst. Appl. 34(2), 866–876 (2008)

    Article  Google Scholar 

  9. Fu, C., Yang, J.H.: Granular classification for imbalanced datasets: a Minkowski distance-based method. Algorithms 14(2), 54 (2021)

    Article  MathSciNet  Google Scholar 

  10. Xia, S.Y., Liu, Y.S., Ding, X., Wang, G.Y., Yu, H., Luo, Y.G.: Granular ball computing classifiers for efficient, scalable and robust learning. Inf. Sci. 483, 136–152 (2019)

    Article  MathSciNet  Google Scholar 

  11. Xia, S.Y., et al.: An efficient and accurate rough set for feature selection, classification, and knowledge representation. IEEE Trans. Knowl. Data Eng. 35(4), 5319–5331 (2024)

    Google Scholar 

  12. Xie, Q., et al.: GBG++: a fast and stable granular ball generation method for classification. IEEE Trans. Emerg. Top. Comput. Intell. 8(2), 2022–2036 (2024)

    Article  Google Scholar 

  13. Chen, Y., Wang, P.X., Yang, X.B., Mi, J.S., Liu, D.: Granular ball guided selector for attribute reduction. Knowl.-Based Syst. 229, 107326 (2021)

    Article  Google Scholar 

  14. Xia, S., Zhang, H., Li, W., Wang, G., Giem, E., Chen, Z.: GBNRS: a novel rough set algorithm for fast adaptive attribute reduction in classification. IEEE Trans. Knowl. Data Eng. 34(3), 1231–1242 (2020)

    Article  Google Scholar 

  15. Yao, Y.Y.: The superiority of three-way decisions in probabilistic rough set models. Inf. Sci. 181(6), 1080–1096 (2011)

    Article  MathSciNet  Google Scholar 

  16. Yao, Y.Y.: Three-way decision and granular computing. Int. J. Approximate Reasoning 103, 107–123 (2018)

    Article  Google Scholar 

  17. Chen, J., Chen, Y., He, Y., Xu, Y., Zhao, S., Zhang, Y.: A classified feature representation three-way decision model for sentiment analysis. Appl. Intell. 52, 7995–8007 (2021). https://doi.org/10.1007/s10489-021-02809-1

    Article  Google Scholar 

  18. Yang, X., Li, T.R., Fujita, H., Liu, D., Yao, Y.Y.: A unified model of sequential three-way decisions and multilevel incremental processing. Knowl.-Based Syst. 134, 172–188 (2017)

    Article  Google Scholar 

  19. Zhang, Q.H., Wang, J., Wang, G.Y.: The approximate representation of rough-fuzzy sets. Chin. J. Comput. Jisuanji Xuebao 38(7), 1484–1496 (2015)

    MathSciNet  Google Scholar 

  20. Yang, J., Wang, X.Q., Wang, G.Y., Xia, D.Y.: Constructing three-way decision of rough fuzzy sets from the perspective of uncertainties. Cogn. Comput. 1–17 (2023)

    Google Scholar 

  21. Cheng, D.D., Li, Y., Xia, S.Y., Wang, G.Y., Huang, J.L., Zhang, S.L.: A fast granular-ball-based density peaks clustering algorithm for large-scale data. IEEE Trans. Neural Netw. Learn. Syst. (2023)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Science Foundation of China (Grant number 62066049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taihua Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Xu, T., Yang, J., Xia, S. (2024). Three-Way Decision of Granular-Ball Rough Sets Based on Fuzziness. In: Hu, M., Cornelis, C., Zhang, Y., Lingras, P., ĹšlÄ™zak, D., Yao, J. (eds) Rough Sets. IJCRS 2024. Lecture Notes in Computer Science(), vol 14840. Springer, Cham. https://doi.org/10.1007/978-3-031-65668-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-65668-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-65667-5

  • Online ISBN: 978-3-031-65668-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics