Skip to main content

Time-Bounded Resilience

  • Conference paper
  • First Online:
Rewriting Logic and Its Applications (WRLA 2024)

Abstract

Most research on system design has focused on optimizing efficiency. However, insufficient attention has been given to the design of systems optimizing resilience, the ability of systems to adapt to unexpected changes or adversarial disruptions. In our prior work, we formalized the intuitive notion of resilience as a property of cyber-physical systems by using a multiset rewriting language with explicit time. In the present paper, we study the computational complexity of a formalization of time-bounded resilience problems for the class of \(\eta \)-simple progressing planning scenarios, where, intuitively, it is simple to check that a system configuration is critical, and only a bounded number of rules can be applied in a single time step. We show that, in the time-bounded model with n (adversarially-chosen) disruptions, the corresponding time-bounded resilience problem for this class of systems is complete for the \(\Sigma ^\textsf {P}_{2n+1}\) class of the polynomial hierarchy, PH. To support the formal models and complexity results, we perform automated experiments for time-bounded verification using the rewriting logic tool Maude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For a discussion of various conditions in the model that may affect complexity, see [23, 24].

  2. 2.

    Execution terminates if a critical state is reached, so paths to goal states are always compliant.

References

  1. Alturki, M.A., Ban Kirigin, T., Kanovich, M., Nigam, V., Scedrov, A., Talcott, C.: On the formalization and computational complexity of resilience problems for cyber-physical systems. In: Theoretical Aspects of Computing–ICTAC 2022: 19th International Colloquium, Tbilisi, Georgia, September 27–29, 2022, Proceedings, pp. 96–113. Springer, Berlin (2022)

    Google Scholar 

  2. Arora, S., Barak, B.: Complexity Theory: A Modern Approach. Cambridge University Press Cambridge (2009)

    Google Scholar 

  3. Ban Kirigin, T., Comer, J., Kanovich, M., Scedrov, A., Talcott, C.: Technical report: Time-bounded resilience (2024). arXiv:2401.05585

  4. Banescu, S., Ochoa, M., Pretschner, A.: A framework for measuring software obfuscation resilience against automated attacks. In: 2015 IEEE/ACM 1st International Workshop on Software Protection, pp. 45–51 (2015)

    Google Scholar 

  5. Bauer, E.: Design for Reliability: Information and Computer-Based Systems. Wiley, New York (2011)

    Google Scholar 

  6. Bennaceur, A., Ghezzi, C., Tei, K., Kehrer, T., Weyns, D., Calinescu, R., Dustdar, S., Hu, Z., Honiden, S., Ishikawa, F., Jin, Z., Kramer, J., Litoiu, M., Loreti, M., Moreno, G., Müller, H., Nenzi, L., Nuseibeh, B., Pasquale, L., Reisig, W., Schmidt, H., Tsigkanos, C., Zhao, H.: Modelling and analysing resilient cyber-physical systems. In: 2019 IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 70–76 (2019)

    Google Scholar 

  7. Bloomfield, R., Fletcher, G., Khlaaf, H., Ryan, P., Kinoshita, S., Kinoshit, Y., Takeyama, M., Matsubara, Y., Popov, P., Imai, K., et al.: Towards identifying and closing gaps in assurance of autonomous road vehicles–a collection of technical notes part 1 (2020). arXiv:2003.00789

  8. Bozza, A., Asprone, D., Fabbrocino, F.: Urban resilience: A civil engineering perspective. Sustainability 9(1) (2017)

    Google Scholar 

  9. Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O’Rourke, T.D., Reinhorn, A.M., Shinozuka, M., Tierney, K., Wallace, W.A., Von Winterfeldt, D.: A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra 19(4), 733–752 (2003)

    Article  Google Scholar 

  10. Caminiti, S., Finocchi, I., Fusco, E.G., Silvestri, F.: Resilient dynamic programming. Algorithmica 77(2), 389–425 (2017)

    Google Scholar 

  11. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude: A High-Performance Logical Framework, volume 4350 of LNCS. Springer, Berlin (2007)

    Google Scholar 

  12. Cunningham, D., Grove, D., Herta, B., Iyengar, A., Kawachiya, K., Murata, H., Saraswat, V., Takeuchi, M., Tardieu, O.: Resilient x10: Efficient failure-aware programming. SIGPLAN Not. 49(8), 67–80 (2014)

    Google Scholar 

  13. Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: Multiset rewriting and the complexity of bounded security protocols. J. Comput. Secur. 12(2), 247–311 (2004)

    Article  Google Scholar 

  14. Eigner, O., Eresheim, S., Kieseberg, P., Klausner, L.D., Pirker, M., Priebe, T., Tjoa, S., Marulli, F., Mercaldo, F.: Towards resilient artificial intelligence: Survey and research issues. In: 2021 IEEE International Conference on Cyber Security and Resilience (CSR), pp. 536–542 (2021)

    Google Scholar 

  15. Ferraro-Petrillo, U., Finocchi, I., Italiano, G.F.: Experimental study of resilient algorithms and data structures. In: Festa, P., (ed.) Experimental Algorithms, pp. 1–12. Springer, Berlin (2010)

    Google Scholar 

  16. Folke, C.: Resilience: the emergence of a perspective for social-ecological systems analyses. Global Environ. Change 16(3):253–267 (2006). Resilience, Vulnerability, and Adaptation: A Cross-Cutting Theme of the International Human Dimensions Programme on Global Environmental Change

    Google Scholar 

  17. Goel, S., Hanneke, S., Moran, S., Shetty, A.: Adversarial resilience in sequential prediction via abstention. Adv. Neural Inf. Process. Syst. 36 (2024)

    Google Scholar 

  18. Hirshfeld, Y., Rabinovich, A.: Logics for real time: decidability and complexity. Fund. Inform. 62(1), 1–28 (2004)

    MathSciNet  Google Scholar 

  19. Huang, W., Zhou, Y., Sun, Y., Banks, A., Meng, J., Sharp, J., Maskell, S., Huang, X.: Formal verification of robustness and resilience of learning-enabled state estimation systems for robotics (2020)

    Google Scholar 

  20. Hukerikar, S., Diniz, P.C., Lucas, R.F.: A programming model for resilience in extreme scale computing. In: IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN 2012), pp. 1–6 (2012)

    Google Scholar 

  21. Kanovich, M., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.: Timed multiset rewriting and the verification of time-sensitive distributed systems. In: 14th International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS) (2016)

    Google Scholar 

  22. Kanovich, M., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.: On the complexity of verification of time-sensitive distributed systems. In: Dougherty, D., Meseguer, J., Mödersheim, S.A., Rowe, P., (eds.), Protocols, Strands, and Logic, volume 13066 of Springer LNCS, pp. 251–275. Springer International Publishing (2021)

    Google Scholar 

  23. Kanovich, M., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.L.: Time, computational complexity, and probability in the analysis of distance-bounding protocols. J. Comput. Secur. 25(6), 585–630 (2017)

    Google Scholar 

  24. Kanovich, M., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.L., Perovic, R.: A rewriting framework and logic for activities subject to regulations. Math. Struct. Comput. Sci. 27(3), 332–375 (2017)

    Google Scholar 

  25. Koren, I., Krishna, C.M.: Fault-Tolerant Systems. Morgan Kaufmann (2020)

    Google Scholar 

  26. Koutsoukos, X., Karsai, G., Laszka, A., Neema, H., Potteiger, B., Volgyesi, P., Vorobeychik, Y., Sztipanovits, J.: Sure: a modeling and simulation integration platform for evaluation of secure and resilient cyber-physical systems. Proc. IEEE 106(1), 93–112 (2018)

    Article  Google Scholar 

  27. Madni, A.M., Erwin, D., Sievers, M.: Constructing models for systems resilience: challenges, concepts, and formal methods. Systems 8(1) (2020)

    Google Scholar 

  28. Madni, A.M., Jackson, S.: Towards a conceptual framework for resilience engineering. IEEE Syst. J. 3(2), 181–191 (2009)

    Article  Google Scholar 

  29. Manyena, S.B.: The concept of resilience revisited. Disasters 30(4), 434–450 (2006)

    Article  Google Scholar 

  30. Mouelhi, S., Laarouchi, M.-E., Cancila, D., Chaouchi, H.: Predictive formal analysis of resilience in cyber-physical systems. IEEE Access 7, 33741–33758 (2019)

    Article  Google Scholar 

  31. Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing robust declassification and qualified robustness. J. Comput. Secur. 14(2), 157–196 (2006)

    Article  Google Scholar 

  32. Neches, R., Madni, A.M.: Towards affordably adaptable and effective systems. Syst. Eng. 16(2), 224–234 (2013)

    Article  Google Scholar 

  33. Nigam, V., Talcott, C.L.: Automating recoverability proofs for cyber-physical systems with runtime assurance architectures. In: David, C., Sun, M., (eds.) 17th International Symposium on Theoretical Aspects of Software Engineering, volume 13931 of Lecture Notes in Computer Science, pp. 1–19. Springer, Berlin (2023)

    Google Scholar 

  34. Olowononi, F.O., Rawat, D.B., Liu, C.: Resilient machine learning for networked cyber physical systems: a survey for machine learning security to securing machine learning for cps. IEEE Commun. Surv. Tutorials 23(1), 524–552 (2021)

    Article  Google Scholar 

  35. Papadimitriou, C.H.: Computational Complexity. Academic Internet Publication (2007)

    Google Scholar 

  36. Prasad, A.: Towards Robust and Resilient Machine Learning. Ph.D. thesis, Carnegie Mellon University (2022)

    Google Scholar 

  37. Sharma, V.C., Haran, A., Rakamaric, Z., Gopalakrishnan, G.: Towards formal approaches to system resilience. In: 2013 IEEE 19th Pacific Rim International Symposium on Dependable Computing, pp. 41–50 (2013)

    Google Scholar 

  38. Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22 (1976)

    Article  MathSciNet  Google Scholar 

  39. Vardi, M.: Efficiency versus resilience: What covid-19 teaches computing. Commun. ACM 63(5), 9 (2020)

    Google Scholar 

  40. Zdancewic, S., Myers, A.C.: Robust declassification. In: Proceedings of the 14th IEEE Workshop on Computer Security Foundations, CSFW ’01, p. 5. IEEE Computer Society, USA (2001)

    Google Scholar 

Download references

Acknowledgment

We thank Vivek Nigam for many insightful discussions during the early part of this work. Kanovich was partially supported by EPSRC Programme Grant EP/R006865/1: “Interface Reasoning for Interacting Systems (IRIS)”. Scedrov was partially supported by the U. S. Office of Naval Research under award number N00014-20-1-2635 during the early part of this work. Talcott was partially supported by the U. S. Office of Naval Research under award numbers N00014-15-1-2202 and N00014-20-1-2644, and NRL grant N0017317-1-G002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Comer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ban Kirigin, T., Comer, J., Kanovich, M., Scedrov, A., Talcott, C. (2024). Time-Bounded Resilience. In: Ogata, K., Martí-Oliet, N. (eds) Rewriting Logic and Its Applications. WRLA 2024. Lecture Notes in Computer Science, vol 14953. Springer, Cham. https://doi.org/10.1007/978-3-031-65941-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-65941-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-65940-9

  • Online ISBN: 978-3-031-65941-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics