Abstract
In the rapidly evolving Internet of Things (IoT) domain, we concentrate on enhancing energy efficiency in Deep Learning accelerators on FPGA-based heterogeneous platforms, aligning with the principles of sustainable computing. Instead of focusing on the inference phase, we introduce innovative optimizations to minimize the overhead of the FPGA configuration phase. By fine-tuning configuration parameters correctly, we achieved a 40.13-fold reduction in configuration energy. Moreover, augmented with power-saving methods, our Idle-Waiting strategy outperformed the traditional On-Off strategy in duty-cycle mode for request periods up to 499.06 ms. Specifically, at a 40 ms request period within a 4147 J energy budget, this strategy extends the system lifetime to approximately 12.39\(\times \) that of the On-Off strategy. Empirically validated through hardware measurements and simulations, these optimizations provide valuable insights and practical methods for achieving energy-efficient and sustainable deployments in IoT.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akkad, G., Mansour, A., Inaty, E.: Embedded deep learning accelerators: a survey on recent advances. IEEE Trans. Artif. Intell. (2023)
AMD: 7 series FPGAs configuration user guide (2023). https://docs.xilinx.com/v/u/en-US/ug470_7Series Config
Chen, J., Hong, S., He, W., Moon, J., Jun, S.W.: Eciton: very low-power LSTM neural network accelerator for predictive maintenance at the edge. In: 2021 31st International Conference on Field-Programmable Logic and Applications (FPL), pp. 1–8. IEEE (2021)
Chéour, R., Khriji, S., El Houssaini, D., Baklouti, M., Abid, M., Kanoun, O.: Recent trends of FPGA used for low-power wireless sensor network. IEEE Aerosp. Electron. Syst. Mag. 34(10), 28–38 (2019)
Cichiwskyj, C., Qian, C., Schiele, G.: Time to learn: temporal accelerators as an embedded deep neural network platform. In: Gama, J., et al. (eds.) ITEM/IoT Streams -2020. CCIS, vol. 1325, pp. 256–267. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66770-2_19
Fritzsch, C., Hoffmann, J., Bogdan, M.: Reduction of bitstream size for low-cost ice40 FPGAs. In: 2022 32nd International Conference on Field-Programmable Logic and Applications (FPL), pp. 117–122. IEEE (2022)
Gan, V.M., Liang, Y., Li, L., Liu, L., Yi, Y.: A cost-efficient digital ESN architecture on FPGA for OFDM symbol detection. ACM J. Emerg. Technol. Comput. Syst. (JETC) 17(4), 1–15 (2021)
Krishnamoorthy, R., et al.: Systematic approach for state-of-the-art architectures and system-on-chip selection for heterogeneous IoT applications. IEEE Access 9, 25594–25622 (2021)
Magyari, A., Chen, Y.: Review of state-of-the-art FPGA applications in IoT networks. Sensors 22(19), 7496 (2022)
Muralidhar, R., Borovica-Gajic, R., Buyya, R.: Energy efficient computing systems: architectures, abstractions and modeling to techniques and standards. ACM Comput. Surv. (CSUR) 54(11s), 1–37 (2022)
Olney, B., Mahmud, S., Karam, R.: Efficient nonlinear autoregressive neural network architecture for real-time biomedical applications. In: 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 411–414. IEEE (2022)
Qian, C., Ling, T., Schiele, G.: Enhancing energy-efficiency by solving the throughput bottleneck of LSTM cells for embedded FPGAs. In: Koprinska, I., et al. (eds.) ECML PKDD 2022. CCIS, vol. 1752, pp. 594–605. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23618-1_40
Qian, C., Ling, T., Schiele, G.: Energy efficient LSTM accelerators for embedded FPGAs through parameterised architecture design. In: Goumas, G., Tomforde, S., Brehm, J., Wildermann, S., Pionteck, T. (eds.) ARCS 2023. LNCS, vol. 13949, pp. 3–17. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42785-5_1
Situnayake, D., Plunkett, J.: AI at the Edge. O’Reilly Media, Inc. (2023)
Acknowledgements
The authors acknowledge the financial support provided by the Federal Ministry of Economic Affairs and Climate Protection of Germany in the RIWWER project (01MD22007C).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Qian, C., Cichiwskyj, C., Ling, T., Schiele, G. (2024). Idle is the New Sleep: Configuration-Aware Alternative to Powering Off FPGA-Based DL Accelerators During Inactivity. In: Fey, D., Stabernack, B., Lankes, S., Pacher, M., Pionteck, T. (eds) Architecture of Computing Systems. ARCS 2024. Lecture Notes in Computer Science, vol 14842. Springer, Cham. https://doi.org/10.1007/978-3-031-66146-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-66146-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-66145-7
Online ISBN: 978-3-031-66146-4
eBook Packages: Computer ScienceComputer Science (R0)