Skip to main content

Idle is the New Sleep: Configuration-Aware Alternative to Powering Off FPGA-Based DL Accelerators During Inactivity

  • Conference paper
  • First Online:
Architecture of Computing Systems (ARCS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14842))

Included in the following conference series:

  • 355 Accesses

Abstract

In the rapidly evolving Internet of Things (IoT) domain, we concentrate on enhancing energy efficiency in Deep Learning accelerators on FPGA-based heterogeneous platforms, aligning with the principles of sustainable computing. Instead of focusing on the inference phase, we introduce innovative optimizations to minimize the overhead of the FPGA configuration phase. By fine-tuning configuration parameters correctly, we achieved a 40.13-fold reduction in configuration energy. Moreover, augmented with power-saving methods, our Idle-Waiting strategy outperformed the traditional On-Off strategy in duty-cycle mode for request periods up to 499.06 ms. Specifically, at a 40 ms request period within a 4147 J energy budget, this strategy extends the system lifetime to approximately 12.39\(\times \) that of the On-Off strategy. Empirically validated through hardware measurements and simulations, these optimizations provide valuable insights and practical methods for achieving energy-efficient and sustainable deployments in IoT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akkad, G., Mansour, A., Inaty, E.: Embedded deep learning accelerators: a survey on recent advances. IEEE Trans. Artif. Intell. (2023)

    Google Scholar 

  2. AMD: 7 series FPGAs configuration user guide (2023). https://docs.xilinx.com/v/u/en-US/ug470_7Series Config

  3. Chen, J., Hong, S., He, W., Moon, J., Jun, S.W.: Eciton: very low-power LSTM neural network accelerator for predictive maintenance at the edge. In: 2021 31st International Conference on Field-Programmable Logic and Applications (FPL), pp. 1–8. IEEE (2021)

    Google Scholar 

  4. Chéour, R., Khriji, S., El Houssaini, D., Baklouti, M., Abid, M., Kanoun, O.: Recent trends of FPGA used for low-power wireless sensor network. IEEE Aerosp. Electron. Syst. Mag. 34(10), 28–38 (2019)

    Article  Google Scholar 

  5. Cichiwskyj, C., Qian, C., Schiele, G.: Time to learn: temporal accelerators as an embedded deep neural network platform. In: Gama, J., et al. (eds.) ITEM/IoT Streams -2020. CCIS, vol. 1325, pp. 256–267. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66770-2_19

    Chapter  Google Scholar 

  6. Fritzsch, C., Hoffmann, J., Bogdan, M.: Reduction of bitstream size for low-cost ice40 FPGAs. In: 2022 32nd International Conference on Field-Programmable Logic and Applications (FPL), pp. 117–122. IEEE (2022)

    Google Scholar 

  7. Gan, V.M., Liang, Y., Li, L., Liu, L., Yi, Y.: A cost-efficient digital ESN architecture on FPGA for OFDM symbol detection. ACM J. Emerg. Technol. Comput. Syst. (JETC) 17(4), 1–15 (2021)

    Article  Google Scholar 

  8. Krishnamoorthy, R., et al.: Systematic approach for state-of-the-art architectures and system-on-chip selection for heterogeneous IoT applications. IEEE Access 9, 25594–25622 (2021)

    Article  Google Scholar 

  9. Magyari, A., Chen, Y.: Review of state-of-the-art FPGA applications in IoT networks. Sensors 22(19), 7496 (2022)

    Article  Google Scholar 

  10. Muralidhar, R., Borovica-Gajic, R., Buyya, R.: Energy efficient computing systems: architectures, abstractions and modeling to techniques and standards. ACM Comput. Surv. (CSUR) 54(11s), 1–37 (2022)

    Article  Google Scholar 

  11. Olney, B., Mahmud, S., Karam, R.: Efficient nonlinear autoregressive neural network architecture for real-time biomedical applications. In: 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 411–414. IEEE (2022)

    Google Scholar 

  12. Qian, C., Ling, T., Schiele, G.: Enhancing energy-efficiency by solving the throughput bottleneck of LSTM cells for embedded FPGAs. In: Koprinska, I., et al. (eds.) ECML PKDD 2022. CCIS, vol. 1752, pp. 594–605. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23618-1_40

    Chapter  Google Scholar 

  13. Qian, C., Ling, T., Schiele, G.: Energy efficient LSTM accelerators for embedded FPGAs through parameterised architecture design. In: Goumas, G., Tomforde, S., Brehm, J., Wildermann, S., Pionteck, T. (eds.) ARCS 2023. LNCS, vol. 13949, pp. 3–17. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42785-5_1

    Chapter  Google Scholar 

  14. Situnayake, D., Plunkett, J.: AI at the Edge. O’Reilly Media, Inc. (2023)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Federal Ministry of Economic Affairs and Climate Protection of Germany in the RIWWER project (01MD22007C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qian, C., Cichiwskyj, C., Ling, T., Schiele, G. (2024). Idle is the New Sleep: Configuration-Aware Alternative to Powering Off FPGA-Based DL Accelerators During Inactivity. In: Fey, D., Stabernack, B., Lankes, S., Pacher, M., Pionteck, T. (eds) Architecture of Computing Systems. ARCS 2024. Lecture Notes in Computer Science, vol 14842. Springer, Cham. https://doi.org/10.1007/978-3-031-66146-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66146-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66145-7

  • Online ISBN: 978-3-031-66146-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics