Skip to main content

Techniques for Showing the Decidability of the Boundedness Problem of Language Acceptors

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14791))

Included in the following conference series:

  • 224 Accesses

Abstract

There are many types of automata and grammar models that have been studied in the literature, and for these models, it is common to determine whether certain problems are decidable. One problem that has been difficult to answer throughout the history of automata and formal language theory is to decide whether a given system M accepts a bounded language (whether there exist words \(w_1, \ldots ,w_k\) such that \(L(M) \subseteq w_1^* \cdots w_k^*\)?). Boundedness was only known to be decidable for regular and context-free languages until recently when it was shown to also be decidable for finite automata and pushdown automata augmented with reversal-bounded counters, and for vector addition systems with states. However, decidability of this problem has still gone unanswered for the majority of automata/grammar models with a decidable emptiness problem that have been studied in the literature.

In this paper, we develop new techniques to show that the boundedness problem is decidable for larger classes of one-way nondeterministic automata and grammar models by reducing the problem to the decidability of boundedness for simpler classes of automata. One technique involves characterizing the models in terms of multi-tape automata. We give new characterizations of finite-turn Turing machines, finite-turn Turing machines augmented with various storage structures (like a pushdown, multiple reversal-bounded counters, partially-blind counters, etc.), and simple matrix grammars. The characterizations are then used to show that the boundedness problem for these models is decidable. Another technique uses the concept of the store language of an automaton. This is used to show that the boundedness problem is decidable for pushdown automata that can “flip” their pushdown a bounded number of times. Boundedness remains decidable even if we augment this device with additional stores.

The research of I. McQuillan was supported, in part, by Natural Sciences and Engineering Research Council of Canada Grant 2022-05092 (Ian McQuillan).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aho, A.V.: Indexed grammars—an extension of context-free grammars. J. ACM 15, 647–671 (1968)

    Article  MathSciNet  Google Scholar 

  2. Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. J. Comput. Syst. Sci. 8(3), 315–332 (1974)

    Article  MathSciNet  Google Scholar 

  3. Baumann, P., et al.: Unboundedness problems for machines with reversal-bounded counters. In: 25th International Conference on Foundations of Software Science and Computation Structures (FoSSaCS) (2023)

    Google Scholar 

  4. Cadilhac, M., Finkel, A., McKenzie, P.: Bounded Parikh automata. Int. J. Found. Comput. Sci. 23(08), 1691–1709 (2012)

    Article  MathSciNet  Google Scholar 

  5. Czerwinski, W., Hofman, P., Zetzsche, G.: Unboundedness problems for languages of vector addition systems. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), vol. 107, p. 119. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2018)

    Google Scholar 

  6. Engelfriet, J.: The power of two-way deterministic checking stack automata. Inf. Comput. 80(2), 114–120 (1989)

    Article  MathSciNet  Google Scholar 

  7. Engelfriet, J.: Iterated stack automata and complexity classes. Inf. Comput. 95(1), 21–75 (1991)

    Article  MathSciNet  Google Scholar 

  8. Engelfriet, J., Skyum, S.: Copying theorems. Inf. Process. Lett. 4(6), 157–161 (1976)

    Article  MathSciNet  Google Scholar 

  9. Ginsburg, S., Spanier, E.: Bounded Algol-like languages. Trans. Am. Math. Soc. 113(2), 333–368 (1964)

    MathSciNet  Google Scholar 

  10. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill Inc., New York (1966)

    Google Scholar 

  11. Greibach, S.: Remarks on blind and partially blind one-way multicounter machines. Theoret. Comput. Sci. 7, 311–324 (1978)

    Article  MathSciNet  Google Scholar 

  12. Greibach, S.: A note on pushdown store automata and regular systems. Proc. Am. Math. Soc. 18, 263–268 (1967)

    Article  MathSciNet  Google Scholar 

  13. Greibach, S.: Checking automata and one-way stack languages. J. Comput. Syst. Sci. 3(2), 196–217 (1969)

    Article  MathSciNet  Google Scholar 

  14. Greibach, S.A.: One way finite visit automata. Theoret. Comput. Sci. 6, 175–221 (1978)

    Article  MathSciNet  Google Scholar 

  15. Hague, M., Lin, A.: Model checking recursive programs with numeric data types. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 743–759. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_60

    Chapter  Google Scholar 

  16. Harju, T., Ibarra, O., Karhumäki, J., Salomaa, A.: Some decision problems concerning semilinearity and commutation. J. Comput. Syst. Sci. 65(2), 278–294 (2002)

    Article  MathSciNet  Google Scholar 

  17. Harrison, M.A., Ibarra, O.H.: Multi-tape and multi-head pushdown automata. Inf. Control 13(5), 433–470 (1968)

    Article  MathSciNet  Google Scholar 

  18. Holzer, M., Kutrib, M.: Flip-pushdown automata: nondeterminism is better than determinism. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 361–372. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45007-6_29

    Chapter  Google Scholar 

  19. Holzer, M., Kutrib, M.: Flip-pushdown automata: k + 1 pushdown reversals are better than k. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 490–501. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0_40

    Chapter  Google Scholar 

  20. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)

    Google Scholar 

  21. Hopcroft, J.E.: On the equivalence and containment problems for context-free languages. Math. Syst. 3, 119–124 (1969)

    Article  MathSciNet  Google Scholar 

  22. Ibarra, O., McQuillan, I.: On store languages of languages acceptors. Theoret. Comput. Sci. 745, 114–132 (2018)

    Article  MathSciNet  Google Scholar 

  23. Ibarra, O.H.: Simple matrix languages. Inf. Control 17(4), 359–394 (1970)

    Article  MathSciNet  Google Scholar 

  24. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978)

    Article  MathSciNet  Google Scholar 

  25. Ibarra, O.H.: Grammatical characterizations of NPDAs and VPDAs with counters. Theoret. Comput. Sci. 746, 136–150 (2018)

    Article  MathSciNet  Google Scholar 

  26. Ibarra, O.H., McQuillan, I.: On store languages and applications. Inf. Comput. 267, 28–48 (2019)

    Article  MathSciNet  Google Scholar 

  27. Ibarra, O.H., McQuillan, I.: Techniques for showing the decidability of the boundedness problem of language acceptors (2024). https://arxiv.org/abs/2405.08988

  28. Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag’’ and other topics in theory of Turing Machines. Ann. Math. 74(3), 437–455 (1961)

    Article  MathSciNet  Google Scholar 

  29. Moriya, E., Tada, T.: On the space complexity of turn bounded pushdown automata. Int. J. Comput. Math. 80(3), 295–304 (2003)

    Article  MathSciNet  Google Scholar 

  30. Rozoy, B.: The Dyck language \({D^{\prime }}_1^*\) is not generated by any matrix grammar of finite index. Inf. Comput. 74(1), 64–89 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian McQuillan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibarra, O.H., McQuillan, I. (2024). Techniques for Showing the Decidability of the Boundedness Problem of Language Acceptors. In: Day, J.D., Manea, F. (eds) Developments in Language Theory. DLT 2024. Lecture Notes in Computer Science, vol 14791. Springer, Cham. https://doi.org/10.1007/978-3-031-66159-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66159-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66158-7

  • Online ISBN: 978-3-031-66159-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics